61 |
Otimização topológica de mecanismos flexíveis com controle da tensão máxima considerando não linearidades geométrica e material / Topology optimization of compliant mechanisms with maximum stressDe Leon, Daniel Milbrath January 2015 (has links)
Mecanismos flexíveis, nos quais a deformação elástica é aproveitada na atuação cinemática, têm grande empregabilidade em dispositivos de mecânica de precisão, engenharia biomédica, e mais recentemente em microeletromecanismos (MEMS). Entre as diversas técnicas empregadas para o seu projeto, a otimização topológica tem se mostrado a mais genérica e sistemática. A grande dificuldade destes projetos é conciliar os requisitos cinemáticos com a resistência mecânica da estrutura. Neste trabalho, é implementado um critério de resistência dentro da formulação do problema de otimização, com o intuito de gerar mecanismos que cumpram a tarefa cinemática desejada mas ao mesmo tempo não ultrapassem limites de tensão predeterminados. Esta restrição adicional também visa aliviar o problema bastante conhecido do aparecimento de articulações. Não linearidade geométrica e de material (hiperelasticida de compressível) são implementadas na solução das equações através do método dos elementos finitos para levar em conta os grandes deslocamentos do mecanismo. O método das assíntotas móveis é usado para a atualização das variáveis de projeto. As derivadas do problema de otimização são calculadas analiticamente, pelo método adjunto. Técnicas de projeção são aplicadas para a garantia de topologias livres de instabilidades numéricas comuns em otimização topológica, e projetos otimizados mais próximos de um espaço 0/1 para as densidades físicas. / Compliant me hanisms, in whi h the elasti strain is the basis for kinemati a tua- tion are widely used in pre ision me hani s devi es, biomedi al engineering, and re ently in mi roele trome hani al systems (MEMS). Among several te hniques applied in ompliant me hanisms design, topology optimization has been one of the most general and systemati . The great hallenge in these designs is to ouple both the kinemati s and the me hani al strength riteria requirements. In this work, a strength riteria for the optimization problem is applied, with the aim of generating ompliant me hanisms that ful ll the desired kine- mati tasks while omplying with a stress threshold. The addition of a stress onstraint to the formulation for ompliant me hanisms in topology optimization also aims to allevi- ate the appearan e of hinges in the optimized topology, a well known issue in the design of ompliant me hanisms. Geometri al and material ( ompressible hyperelasti ity) nonlin- earities are applied to the nite element equilibrium equations, to take into a ount large displa ements. The method of moving asymptotes is applied for design variables updating. The derivatives are al ulated analyti ally, by the adjoint method. Proje tion ltering te h- niques are applied, in order to guarantee topologies free of ommon numeri al instabilities in topology optimization, and optimized designs near the 0/1 solution for the physi al densities.
|
62 |
Aplicação de um modelo substituto para otimização estrutural topológica com restrição de tensão e estimativa de erro a posterioriVarella, Guilherme January 2015 (has links)
Este trabalho apresenta uma metodologia de otimização topológica visando reduzir o volume de uma estrutura tridimensional sujeita a restrição de tensão. A análise estrutural é feita através do método dos elementos finitos, as tensões são calculadas nos pontos de integração Gaussiana e suavizadas. Para evitar problemas associados a singularidades na tensão é aplicado o método de relaxação de tensão, que penaliza o tensor constitutivo. A norma-p é utilizada para simular a função máximo, que é utilizada como restrição global de tensão. O estimador de erro de Zienkiewicz e Zhu é usado para calcular o erro da tensão, que é considerado durante o cálculo da norma-p, tornando o processo de otimização mais robusto. Para o processo de otimização é utilizada o método de programação linear sequencial, sendo todas as derivadas calculadas analiticamente. É proposto um critério para remoção de elementos de baixa densidade, que se mostrou eficiente contribuindo para gerar estruturas bem definidas e reduzindo significativamente o tempo computacional. O fenômeno de instabilidade de tabuleiro é contornado com o uso de um filtro linear de densidade. Para reduzir o tempo dispendido no cálculo das derivadas e aumentar o desempenho do processo de otimização é proposto um modelo substituto (surrogate model) que é utilizado em iterações internas na programação linear sequencial. O modelo substituto não reduz o tempo de cálculo de cada iteração, entretanto reduziu consideravelmente o número de avaliações da derivada. O algoritmo proposto foi testado otimizando quatro estruturas, e comparado com variações do método e com outros autores quando possível, comprovando a validade da metodologia empregada. / This work presents a methodology for stress-constrained topology optimization, aiming to minimize material volume. Structural analysis is performed by the finite element method, and stress is computed at the elemental Gaussian integration points, and then smoothed over the mesh. In order to avoid the stress singularity phenomenon a constitutive tensor penalization is employed. A normalized version of the p-norm is used as a global stress measure instead of local stress constraint. A finite element error estimator is considered in the stress constraint calculation. In order to solve the optimization process, Sequential Linear Programming is employed, with all derivatives being calculated analiticaly. A criterion is proposed to remove low density elements, contributing for well-defined structures and reducing significantly the computational time. Checkerboard instability is circumvented with a linear density filter. To reduce the computational time and enhance the performance of the code, a surrogate model is used in inner iterations of the Sequential Linear Programming. The present algorithm was evaluated optimizing four structures, and comparing with variations of the methodolgy and results from other authors, when possible, presenting good results and thus verifying the validity of the procedure.
|
63 |
Projeto simultâneo de otimização topológica e controle para redução de vibrações utilizando material piezelétrico / Simultaneous design of structural topology and control for vibration reduction using piezoelectric materialSilveira, Otavio Augusto Alves da January 2012 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de projeto ótimo de estruturas ativamente controladas (inteligentes), com o objetivo de suprimir as vibrações induzidas por perturbações externas. O projeto é realizado simultaneamente para a topologia estrutural e a localização de atuadores. O problema de otimização topológica é formulado para três fases materiais (dois materiais sólidos e vazio),com dois grupos de variáveis de projeto. Um material não piezelétrico elástico isotrópico forma a parte puramente estrutural, enquanto um material piezelétrico compõe a parte ativa. Uma vez que não há método eficiente para tratar as variáveis de projeto estruturais e de controle em um mesmo ambiente de otimização, este trabalho propõe uma abordagem de solução aninhada. Nesta solução, o posicionamento dos atuadores e a síntese do sistema controlador são considerados em um laco de projeto paralelo ao processo de otimização que lida com a topologia estrutural. O laço de otimização principal está relacionado `as variáveis de projeto estruturais, ou seja, ´e calculado onde deve haver material sólido e onde deve haver espaços vazios, através de um problema de minimização de flexibilidade. A localização de atuadores ´e determinada por uma otimização baseada em uma lei de controle que define onde o material deve ter propriedades piezelétricas, através da maximização de uma medida de controlabilidade. Os exemplos numéricos mostram que a abordagem utilizada neste trabalho pode produzir uma topologia estrutural bem definida com uma boa colocação para os atuadores. Além disso, as topologias ótimas encontradas são capazes de melhorar o amortecimento ativo da estrutura. / This work develops an optimal design methodology for actively controlled structures, aiming to suppress vibrations induced by external disturbances. Design is conducted simultaneously for the structural topology and actuator placement. A topology optimization problem is formulated for three material phases (two solid materials and void) with two design variables groups. A non-piezoelectric elastic isotropic material forms the structural only part of the design, while a piezoelectric material composes the active part. Since there is no efficient method to treat structural and control design variables in the same optimization framework, this work proposes a nested solution approach, where the actuator locations and controller syntheses are regarded as a parallel design to the main optimization process dealing with the structural topology. The main optimization loop designs the structural variables, i.e., it is decided where there should be solid material and where there should be voids, through a minimum compliance design problem. The actuators are placed by considering a control law optimization that defines where the material should have piezoelectric properties, through the maximization of a measure of controllability. Numerical examples show that the approach used in this paper can produce a clear structural topology with a good actuator placement. Besides, the optimal topologies can improve the active damping.
|
64 |
Projeto de atuadores de múltiplos graus de liberdade baseados em placas piezelétricas utilizando o método de otimização topológica. / Design of multiple degrees of freedom actuators based on piezoelectric plates using the topologic optimization methodVinícius Michelan Demarque 02 August 2012 (has links)
Atuadores piezelétricos são dispositivos que permitem a conversão de energia elétrica em energia mecânica. Dentre os atuadores piezelétricos, destacam-se os bilaminares, que consistem em duas piezocerâmicas de polarização oposta (ou excitadas com cargas de sinal contrário) com um substrato entre elas. Os atuadores piezelétricos também podem ser miniaturizados, alcançando a escala de MEMS (Micro-Electric-Mechanical System). Este trabalho tem por objetivo desenvolver uma metodologia utilizando o Método de Otimização Topológica (MOT) para o projeto de atuadores piezelétricos com múltiplos graus de liberdade baseados no princípio bilaminar. A fase de projeto consiste na utilização do MOT para a determinação de uma configuração de atuadores que maximizem o deslocamento numa direção e sentido especificados para uma restrição na quantidade de material utilizado em cada camada, considerando a polarização da cerâmica piezelétrica presente nessa configuração e o acoplamento e simetria entre as camadas. Para a simulação do atuador é utilizado o Método dos Elementos Finitos (MEF) através de um elemento de placa piezelétrica isoparamétrico de oito nós expandido. O MOT, neste trabalho, utiliza o modelo de material denominado PEMAP-P (Material Piezelétrico com Penalização e Polarização). A técnica de projeção é utilizada junto ao MOT para a obtenção de um resultado com uma geometria bem definida. O problema de otimização é resolvido através de Programação Matemática Sequencial (PMS) através do algoritmo GCMMA (Globally Convergent Method of Moving Asymptotes). Como exemplo é estudado o projeto de um atuador piezelétrico para microespelhos. Dentre as configurações obtidas pelo MOT, uma é fabricada utilizando as técnicas de corte a laser e colagem e, posteriormente, é caracterizada. Finalmente, é realizada a comparação entre os resultados de simulação e experimentais do protótipo. / Piezoelectric actuators are devices that allow the conversion of electric energy to mechanical energy. Among the piezoelectric, the bimorph stands. It consists of two piezoceramic plates with opposite polarization (or excited with opposite sign charges) with a substrate between them. The piezoelectric actuators can also be miniaturized in a MEMS scale. This work aims the design of a methodology using the Topology Optimization Method (TOM) for the design of piezoelectric actuators with multiple degrees of freedom using the bimorph principle. The design phase applies the TOM to determine an optimized configuration of actuators that maximizes the output displacement in a specified direction and orientation for a constraint in the amount of material used at each layer, by considering the polarization of the piezoelectric ceramic present on this configuration and the coupling and symmetry between layers. The Finite Element Method (FEM) is applied for actuator simulation through an extended piezoelectric plate isoparametric element with 8 nodes. The TOM in this work employs a material model called PEMAP-P (Piezoelectric Material with Penalization and Polarization). The projection technique is implemented with TOM to obtain a result with a well-defined geometry. The optimization problem is solved by using Sequential Mathematical Programming (SMP) through the GCMMA algorithm (Globally Convergent Method of Moving Asymptotes). As an example, the design of a piezoelectric actuator for micromirrors is studied. Among the configurations obtained by the TOM, one is manufactured using laser cutting and bonding techniques and it is tested. Finally, a comparison between the simulated and experimental results from prototype is performed.
|
65 |
Projeto de materiais piezocompósitos baseados no conceito de gradação funcional utilizando o método de otimização topológica. / Design of piezocomposite materials based on functionally graded concept by means of topology optimization method.Sandro Luis Vatanabe 09 November 2012 (has links)
Um material piezocompósito é resultante da combinação de um material piezelétrico com outros materiais não-piezelétricos, oferecendo vantagens substanciais em relação aos materiais piezelétricos convencionais. Diferentes propriedades efetivas podem ser obtidas alterando-se a fração de volume dos constituintes ou a própria topologia da célula unitária do piezocompósito. Materiais com Gradação Funcional (MGF) são materiais compósitos avançados, projetados de tal forma que sua composição varie gradualmente numa direção espacial. A vantagem do conceito MGF é não apresentar interface convencional entre os materiais da inclusão e da matriz, reduzindo assim um problema comum em materiais compósitos laminados, como por exemplo, o surgimento de concentração de tensões mecânicas. O Método de Otimização Topológica (MOT) é uma técnica computacional utilizada para se determinar a distribuição de materiais em uma estrutura ou material de forma sistemática, a fim de se extremizar uma determinada função objetivo. Assim, esse trabalho propõe uma metodologia sistemática e genérica para o projeto de materiais piezocompósitos com gradação funcional (MPGF) utilizando o MOT, tanto para aplicações quasi-estáticas, quanto para aplicações dinâmicas. Dessa forma, divide-se o projeto de materiais piezocompósitos em três grupos. O primeiro grupo consiste em um método de projeto de materiais baseado na combinação do método de homogeneização com o MOT para o projeto de MPGF para aplicações quasi-estáticas, onde o objetivo é projetar materiais piezocompósitos que, de modo geral, maximizem a conversão de energia mecânica em elétrica. A aplicação utilizada como exemplo neste trabalho são materiais empregados em dispositivos de coleta de energia. O segundo grupo visa aplicações dinâmicas de materiais piezocompósitos fonônicos, onde a propriedade de interesse é a possibilidade de se ter faixas de frequência, mais conhecidas por band gaps, nas quais ondas elásticas não se propagam. Assim, neste estudo visa-se o projeto de MPGF fonônicos com largura e posição de band gaps prescritos, empregando estruturas unidimensionais, e a maximização de diversos band gaps, empregando estruturas bidimensionais. O terceiro grupo explora o conceito de gradação geométrica, baseado em repetições de padrão ao longo do domínio de projeto, porém cada repetição tem um ou mais comprimentos modificados, de forma gradual. Dessa forma, suas propriedades alteram-se progressivamente ao longo da estrutura, embora a distribuição de materiais seja discreta, contornando assim possíveis dificuldades de manufatura. Esta abordagem é empregada visando à aplicação na coleta de energia, onde se procura maximizar a potência elétrica gerada em um resistor acoplado aos eletrodos, através da obtenção da topologia otimizada de estruturas piezocompósitas. Exemplos numéricos são apresentados de forma a ilustrar as metodologias de projeto propostas, bem como, analisar a influência dos parâmetros de otimização nos resultados. / Piezocomposite materials result from the combination of a piezoelectric material with other non-piezoelectric materials, offering advantages over conventional piezoelectric materials. Different effective properties can be obtained by changing the volume fraction of constituent materials, the shape of inclusions, or even the topology of the unit cell. Functionally Graded Materials (FGM) are composite materials, which are designed so that its composition varies gradually in space. One of the advantages of FGMs is that there is no conventional interface between the constituent materials, which reduces, for instance, microscopic stress concentration problems in composite materials. Topology Optimization Method (TOM) is a computational technique used to determine the material distribution of a structure or material in a systematic way, in order to maximize a determined objective function. Thus, this study proposes a generic and systematic methodology to design Functionally Graded Piezocomposites Materials (FGPM) using TOM, for quasi-static and dynamic applications. The study is divided into three groups. The first group combines the homogenization method with TOM in order to design FGPM for quasi-static applications, where the goal is to maximize the conversion of mechanical energy into electrical energy. The application used as an example in this study focuses materials used in energy harvesting devices. The second group focuses on dynamic applications of phononic piezocomposite materials, where the property of interest is the possibility of having frequency band gaps, in which elastic waves do not propagate. This study aims to design phononic FGPM with prescribed band gap width using one-dimensional model, and to design phononic FGPM with maximized band gaps using two-dimensional model. The third group investigates the pattern gradation concept, based on pattern repetitions over the design domain, but each pattern has one or more dimensions gradually modified. Thus, properties change gradually along the structure, although the material distribution keeps in the discrete form, thereby circumventing potential manufacturing difficulties. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Numerical examples are presented and discussed using the proposed methods.
|
66 |
Otimização topológica de mecanismos flexíveis com controle da tensão máxima considerando não linearidades geométrica e material / Topology optimization of compliant mechanisms with maximum stressDe Leon, Daniel Milbrath January 2015 (has links)
Mecanismos flexíveis, nos quais a deformação elástica é aproveitada na atuação cinemática, têm grande empregabilidade em dispositivos de mecânica de precisão, engenharia biomédica, e mais recentemente em microeletromecanismos (MEMS). Entre as diversas técnicas empregadas para o seu projeto, a otimização topológica tem se mostrado a mais genérica e sistemática. A grande dificuldade destes projetos é conciliar os requisitos cinemáticos com a resistência mecânica da estrutura. Neste trabalho, é implementado um critério de resistência dentro da formulação do problema de otimização, com o intuito de gerar mecanismos que cumpram a tarefa cinemática desejada mas ao mesmo tempo não ultrapassem limites de tensão predeterminados. Esta restrição adicional também visa aliviar o problema bastante conhecido do aparecimento de articulações. Não linearidade geométrica e de material (hiperelasticida de compressível) são implementadas na solução das equações através do método dos elementos finitos para levar em conta os grandes deslocamentos do mecanismo. O método das assíntotas móveis é usado para a atualização das variáveis de projeto. As derivadas do problema de otimização são calculadas analiticamente, pelo método adjunto. Técnicas de projeção são aplicadas para a garantia de topologias livres de instabilidades numéricas comuns em otimização topológica, e projetos otimizados mais próximos de um espaço 0/1 para as densidades físicas. / Compliant me hanisms, in whi h the elasti strain is the basis for kinemati a tua- tion are widely used in pre ision me hani s devi es, biomedi al engineering, and re ently in mi roele trome hani al systems (MEMS). Among several te hniques applied in ompliant me hanisms design, topology optimization has been one of the most general and systemati . The great hallenge in these designs is to ouple both the kinemati s and the me hani al strength riteria requirements. In this work, a strength riteria for the optimization problem is applied, with the aim of generating ompliant me hanisms that ful ll the desired kine- mati tasks while omplying with a stress threshold. The addition of a stress onstraint to the formulation for ompliant me hanisms in topology optimization also aims to allevi- ate the appearan e of hinges in the optimized topology, a well known issue in the design of ompliant me hanisms. Geometri al and material ( ompressible hyperelasti ity) nonlin- earities are applied to the nite element equilibrium equations, to take into a ount large displa ements. The method of moving asymptotes is applied for design variables updating. The derivatives are al ulated analyti ally, by the adjoint method. Proje tion ltering te h- niques are applied, in order to guarantee topologies free of ommon numeri al instabilities in topology optimization, and optimized designs near the 0/1 solution for the physi al densities.
|
67 |
Aplicação de um modelo substituto para otimização estrutural topológica com restrição de tensão e estimativa de erro a posterioriVarella, Guilherme January 2015 (has links)
Este trabalho apresenta uma metodologia de otimização topológica visando reduzir o volume de uma estrutura tridimensional sujeita a restrição de tensão. A análise estrutural é feita através do método dos elementos finitos, as tensões são calculadas nos pontos de integração Gaussiana e suavizadas. Para evitar problemas associados a singularidades na tensão é aplicado o método de relaxação de tensão, que penaliza o tensor constitutivo. A norma-p é utilizada para simular a função máximo, que é utilizada como restrição global de tensão. O estimador de erro de Zienkiewicz e Zhu é usado para calcular o erro da tensão, que é considerado durante o cálculo da norma-p, tornando o processo de otimização mais robusto. Para o processo de otimização é utilizada o método de programação linear sequencial, sendo todas as derivadas calculadas analiticamente. É proposto um critério para remoção de elementos de baixa densidade, que se mostrou eficiente contribuindo para gerar estruturas bem definidas e reduzindo significativamente o tempo computacional. O fenômeno de instabilidade de tabuleiro é contornado com o uso de um filtro linear de densidade. Para reduzir o tempo dispendido no cálculo das derivadas e aumentar o desempenho do processo de otimização é proposto um modelo substituto (surrogate model) que é utilizado em iterações internas na programação linear sequencial. O modelo substituto não reduz o tempo de cálculo de cada iteração, entretanto reduziu consideravelmente o número de avaliações da derivada. O algoritmo proposto foi testado otimizando quatro estruturas, e comparado com variações do método e com outros autores quando possível, comprovando a validade da metodologia empregada. / This work presents a methodology for stress-constrained topology optimization, aiming to minimize material volume. Structural analysis is performed by the finite element method, and stress is computed at the elemental Gaussian integration points, and then smoothed over the mesh. In order to avoid the stress singularity phenomenon a constitutive tensor penalization is employed. A normalized version of the p-norm is used as a global stress measure instead of local stress constraint. A finite element error estimator is considered in the stress constraint calculation. In order to solve the optimization process, Sequential Linear Programming is employed, with all derivatives being calculated analiticaly. A criterion is proposed to remove low density elements, contributing for well-defined structures and reducing significantly the computational time. Checkerboard instability is circumvented with a linear density filter. To reduce the computational time and enhance the performance of the code, a surrogate model is used in inner iterations of the Sequential Linear Programming. The present algorithm was evaluated optimizing four structures, and comparing with variations of the methodolgy and results from other authors, when possible, presenting good results and thus verifying the validity of the procedure.
|
68 |
Projeto simultâneo de otimização topológica e controle para redução de vibrações utilizando material piezelétrico / Simultaneous design of structural topology and control for vibration reduction using piezoelectric materialSilveira, Otavio Augusto Alves da January 2012 (has links)
Este trabalho consiste no desenvolvimento de uma metodologia de projeto ótimo de estruturas ativamente controladas (inteligentes), com o objetivo de suprimir as vibrações induzidas por perturbações externas. O projeto é realizado simultaneamente para a topologia estrutural e a localização de atuadores. O problema de otimização topológica é formulado para três fases materiais (dois materiais sólidos e vazio),com dois grupos de variáveis de projeto. Um material não piezelétrico elástico isotrópico forma a parte puramente estrutural, enquanto um material piezelétrico compõe a parte ativa. Uma vez que não há método eficiente para tratar as variáveis de projeto estruturais e de controle em um mesmo ambiente de otimização, este trabalho propõe uma abordagem de solução aninhada. Nesta solução, o posicionamento dos atuadores e a síntese do sistema controlador são considerados em um laco de projeto paralelo ao processo de otimização que lida com a topologia estrutural. O laço de otimização principal está relacionado `as variáveis de projeto estruturais, ou seja, ´e calculado onde deve haver material sólido e onde deve haver espaços vazios, através de um problema de minimização de flexibilidade. A localização de atuadores ´e determinada por uma otimização baseada em uma lei de controle que define onde o material deve ter propriedades piezelétricas, através da maximização de uma medida de controlabilidade. Os exemplos numéricos mostram que a abordagem utilizada neste trabalho pode produzir uma topologia estrutural bem definida com uma boa colocação para os atuadores. Além disso, as topologias ótimas encontradas são capazes de melhorar o amortecimento ativo da estrutura. / This work develops an optimal design methodology for actively controlled structures, aiming to suppress vibrations induced by external disturbances. Design is conducted simultaneously for the structural topology and actuator placement. A topology optimization problem is formulated for three material phases (two solid materials and void) with two design variables groups. A non-piezoelectric elastic isotropic material forms the structural only part of the design, while a piezoelectric material composes the active part. Since there is no efficient method to treat structural and control design variables in the same optimization framework, this work proposes a nested solution approach, where the actuator locations and controller syntheses are regarded as a parallel design to the main optimization process dealing with the structural topology. The main optimization loop designs the structural variables, i.e., it is decided where there should be solid material and where there should be voids, through a minimum compliance design problem. The actuators are placed by considering a control law optimization that defines where the material should have piezoelectric properties, through the maximization of a measure of controllability. Numerical examples show that the approach used in this paper can produce a clear structural topology with a good actuator placement. Besides, the optimal topologies can improve the active damping.
|
69 |
Uma formulação de otimização topológica com restrição de tensão suavizadaSilva, Everton da January 2012 (has links)
No presente trabalho, foi implementada uma formulação de otimização topológica com o objetivo de encontrar o mínimo volume de estruturas contínuas bidimensionais, em estado plano de tensão, sujeitas à restrição de tensão de von Mises. Foi utilizado o Método dos Elementos Finitos para discretizar o domínio, com o elemento não conforme de Taylor. A tensão foi suavizada, calculando-se um valor de tensão para cada nó do elemento. O fenômeno da singularidade foi contornado através do método de relaxação da tensão, penalizando-se o tensor constitutivo. Foi usada uma única medida de tensão global, a normap, resultando na redução do custo computacional do cálculo das sensibilidades. As sensibilidades da função objetivo e da restrição de tensão foram calculadas analiticamente. O problema de otimização topológica foi resolvido por um algoritmo de Programação Linear Sequencial. Os fenômenos da instabilidade de tabuleiro e da dependência da malha foram contornados pela utilização de um filtro de densidade linear. A formulação desenvolvida foi testada em 3 casos clássicos. No primeiro deles, foi testada uma viga curta em balanço, submetida a 3 diferentes tipos de penalização da função objetivo, obtendo-se uma estrutura com 27% do volume inicial, com reduzido número de elementos com densidades intermediárias. No segundo caso, foi testada a mesma estrutura submetida à flexão, chegandose a uma topologia bem definida no formato de duas barras, com 16,25% do volume inicial. No terceiro caso, em que foi utilizado um componente estrutural em formato de “L”, justamente por favorecer o surgimento de concentração de tensão em sua quina interna, o otimizador gerou uma estrutura bem definida, permanecendo, contudo, uma pequena região de concentração de tensão na topologia final. / A topology optimization formulation to search for the minimum volume of twodimensional linear elastic continuous structures in plane stress, subject to a von Mises stress constraint, was implemented in this study. The extended domain was discretized using Taylor nonconforming finite element. Nodal values of the stress tensor field were computed by global smoothing. A penalized constitutive tensor stress relaxation method bypassed the stress singularity problem. A single p-norm global stress measure was used to speed up the sensitivity analysis. The sensitivities of the objective function and stress constraints were derived analytically. The topology optimization problem was solved by a Sequential Linear Programming algorithm. A linear density filter avoided the checkerboard and the mesh dependence phenomena. The formulation was tested with three benchmark cases. In the first case, a tip loaded short cantilever beam was optimized using a sequence of three different objective function penalizations. The converged design had approximately 27% of the initial volume, with a small proportion of intermediate densities areas. In the second case, the same domain was subjected to shear, resulting a well defined two-bar design, with 16.25% of the initial volume. In the third case, an L-shape structure was studied, because it has a stress concentration at the reentrant corner. In this last case, the final topology was well-defined, but the stress concentration was not completely removed.
|
70 |
Metodologia para localização de atuadores/sensores piezelétricos para o controle ativo de vibrações via otimização topológica / Topology optimization methodology for the location of piezoelectric actuators/sensors for active vibration controlMenuzzi, Odair January 2014 (has links)
Este trabalho desenvolveu uma metodologia de otimização da localização de material piezelétrico para avaliar vibrações estruturais. O principal objetivo foi estabelecer um procedimento para a determinação concomitante da localização mais adequada para atuadores e sensores piezelétricos através de uma formulação de um problema de otimização topológica. De acordo com a metodologia proposta, a localização desses atuadores e sensores é determinada através da maximização da controlabilidade e da observabilidade, ambas medidas por intermédio do seu gramiano, definindo onde o material deve ter propriedades piezelétricas. Os resultados do processo de otimização foram avaliados em malha fechada através do uso de dois controladores ótimos (LQR e LQG), utilizados em simulações para atenuar as oscilações estruturais resultantes da aplicação de perturbações externas. O desenvolvimento dos algoritmos de controle foi realizado com a utilização de um modelo modal truncado em seus primeiros modos de vibração. Os resultados mostram a eficácia do processo de otimização topológica quanto à localização de atuadores e sensores na estrutura. Além disso, verificou-se que a localização do material piezelétrico melhora o amortecimento estrutural, sendo importante para o desempenho das técnicas de controle utilizadas. / This work proposes a topology optimization methodology for the location of piezoelectric actuator/sensors for active vibration control. The main objective is to develop a procedure to determine the most suitable location for piezoelectric sensors and actuators using a topology optimization formulation. According to the proposed method, the location of these actuators and sensors is determined the maximization of the controllability and observability, both measured by the gramian matrix, defining where the material should have piezoelectric properties. The results of the optimization process are evaluated in closed loop by using two (LQR and LQG) active controllers, which are used in simulations to attenuate structural oscillations resulting from the application of external disturbances. The development of control algorithms was performed with the use of a modal model truncated to lowest modes. Results show the effectiveness of the topology optimization process as the location of actuators and sensors in the structure. Furthermore, it was found that location of the piezoelectric material improves the structural damping, which is important for the performance of control techniques.
|
Page generated in 0.0173 seconds