141 |
B7-H3 suppresses anti-tumor immunity via the CCL2-CCR2-M2 macrophage axis and contributes to ovarian cancer progression / B7-H3はCCL2-CCR2-M2マクロファージ経路を介して抗腫瘍免疫を抑制し、卵巣癌の進展に寄与するMiyamoto, Taito 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23801号 / 医博第4847号 / 新制||医||1058(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 小林 恭, 教授 竹内 理, 教授 金子 新 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
142 |
THE IMPACT OF GENETIC COUNSELING ON CLINICAL DECISION MAKING AMONG WOMEN EVALUATED FOR HEREDITARY BREAST AND OVARIAN CANCER RISKPRITZLAFF, MARY ELIZABETH 11 October 2001 (has links)
No description available.
|
143 |
Japanese women's reasons for accompaniment status to Hereditary Breast and Ovarian Cancer-focused genetic counseling / 遺伝カウンセリング初回来談時、同伴者有無の理由:遺伝性乳癌卵巣癌症候群疑いで来談した人を対象とした質的研究Matsukawa, Manami 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23759号 / 医博第4805号 / 新制||医||1056(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 万代 昌紀, 教授 松村 由美, 教授 古川 壽亮 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
144 |
Metabolic Adaptations of Ovarian Cancer Metastases to Physiological Conditions and Disease ProgressionCompton, Stephanie Lynn Edwards 11 April 2022 (has links)
Ovarian cancer is the fifth leading cause of all cancer deaths in women and the most lethal gynecologic cancer in the United States. During metastasis, cancer cells exfoliate from the primary tumor and aggregate to form spheroids, enhancing their survival within the peritoneal cavity during dissemination to a secondary outgrowth site. The inability of removal of these aggregates by traditional surgical interventions may contribute to the high recurrence and mortality rate of ovarian cancer diagnosed at late stages. Obesity, particularly abdominal obesity, has been shown to increase ovarian cancer risk and decrease survival. The recruitment of stromal vascular fraction (SVF) present in adipose tissue represents a growth and proliferation advantage to ovarian tumors, and endogenous sphingolipids like sphingosine-1-phosphate are increased in ovarian cancer patients. These conditions, combined with the physiological conditions within malignant ascites (hypoxia and low glucose), represent a physiological environment that can impact the metabolic responses of ovarian cancer spheroids. Here, we investigated the metabolic adaptations of serous ovarian cancer cells across the metastatic cycle and in conditions that mimic those of the peritoneal cavity and malignant ascites. We first investigated the different in metabolic responses between adherent monolayers and 3D spheroids. We confirmed that spheroids have a reduced metabolic rate and drug response that is affected by the incorporation of obese SVF into aggregates. To investigate these changes in the next stages of the metastatic cycle, we used time trials to observe how adherence of spheroids to a secondary site changes metabolic response and substrate utilization in physiological conditions. Adhesion of spheroids showed changes in energy metabolism and substrate utilization, switching from mainly glutamine oxidation to glucose oxidation that could support successful outgrowth. Spheroids also were resilient to culture conditions, even non-permissive conditions such as those found in the peritoneal cavity. Finally, we utilized human malignant ascites from ovarian cancer patients as a further investigation into conditions that imitate in vivo characteristics that could affect spheroid metabolism. Exposure to malignant ascites reduced spheroid viability as well as basal respiration and ATP synthesis. However, spare respiratory capacity was increased, and human spheroids changed their substrate utilization in response to ascites. Taken together, these studies provide an identification of metabolic switches across different stages of ovarian cancer metastasis that contribute to their survival, which represents an emerging target for prevention and treatment for individuals with ovarian cancer. / Doctor of Philosophy / Ovarian cancer is the deadliest reproductive cancer in women, and most women who are diagnosed will die from the disease because of its high recurrence rate and because it is typically detected at late stages. When ovarian cancer metastasizes, cells or cell clusters from the original tumor aggregate together to form balls of cells called spheroids, which move through the abdominal cavity to other sites to grow additional tumors. These spheroids are thought to contribute to recurrence of this cancer, since they cannot be removed by surgery. As these spheroids move through the abdominal cavity, they are exposed to an environment that has a low amount of oxygen and glucose. These spheroids may also be exposed to bioactive lipids and cells from the adipose tissue called stromal vascular fraction, both of which are related to obesity and may help cancer spheroids survive. The survival of these spheroids is in part related to how their metabolism functions, which may help them make energy and the building blocks needed to continue growing and form successful secondary tumors. Identifying how these spheroids change their metabolism at different points during the disease may help identify points that can be targeted to prevent changes in metabolism that could support their growth. This dissertation identified metabolic changes that occur in spheroids, in conditions that are similar to those spheroids would be exposed to in an abdominal cavity. First, we compared single layers of cells to spheroids and found that spheroids had a lower metabolic rate and lower drug response, which may help them survive in the abdominal cavity. Next, we allowed the spheroids to lay down and grow out, like they would when they found a new location during metastasis, to see how their metabolism changed and what substances they used to make energy in conditions that mimicked the abdominal cavity. As spheroids adhered, they changed their energy metabolism and switched the substances they used to make energy, all while continuing to survive and grow out even in conditions that were not supportive. These switches could help them grow out and successfully metastasize. Lastly, we used ascites fluid from human ovarian cancer patients and treated spheroids with this to see how their metabolism changed in response. While some aspects of metabolism and survival was reduced, their ability to increase their metabolism when stressed increased and human spheroids used nutrients to make energy differently. Overall, we show that across the stages of metastasis, ovarian cancer spheroids can change their metabolism in response to their environment. Identifying these metabolic switches helps us understand how successful metastasis happens, and can inform future targets to slow or prevent metastasis, prolonging the life of women who have been diagnosed with ovarian cancer.
|
145 |
Characterization of Metabolic Differences in Benign, Slow Developing and Tumor Initiating Ovarian CancersAnderson, Angela S. 14 May 2013 (has links)
Ovarian cancer is known as the "silent killer," due to its late diagnosis and frequent recurrence after initial treatment. Finding a new way to diagnose and treat ovarian cancer in conjunction with current therapies is paramount. By capitalizing on metabolic changes that occur during cancer progression, interventions can be developed. The Nobel laureate Otto Warburg is credited with discovering an altered metabolic state within cancer cells known as the Warburg effect. In the Warburg effect, cancer cells participate in an increased rate of aerobic glycolysis with an excess secretion of lactate, allowing for carbon flux into biosynthetic pathways. Exactly which metabolic pathways are altered in ovarian cancer and at which stage in the progression of ovarian cancer they are occurring was unknown. Therefore using the recently established mouse ovarian surface epithelial (MOSE) progression model, we were able to measure metabolic changes in varying states of disease and levels of aggressiveness. As cells progressed from a benign early stage (MOSE-E), through a transitional intermediate stage (MOSE-I), to an aggressive late stage (MOSE-L), the MOSE cells became more glycolytic and lipogenic, establishing the MOSE model as a valuable model for studying ovarian cancer metabolism. Treating the MOSE cells with the naturally occurring chemotherapeutic agent sphingosine decreased p-AKT protein levels in the cell, decreased the glycolytic rate and decreased de novo cholesterol synthesis. Cancer stem cells are known to be resistant to chemotherapy treatments and targeting their metabolism may be promising for combinatorial treatments. Therefore, the metabolism of highly aggressive tumor-initiating cells (TIC), harvested from ascites of C57Bl/6 mice injected with MOSE-L cells were characterized. Although the basal metabolism of the TICs was similar to the MOSE-L cells, TICs were more resistant to cell death as a consequence of external stresses and substrate depletion. The TICs could also up-regulate oxygen consumption rate (OCR) when uncoupled and increase glycolysis when ATP Synthase was inhibited, highlighting their resiliency. Taken together, we have identified targets for treatment strategies that could suppress the growth of primary tumors and may be effective against TICs, thereby suppressing tumor recurrence and possibly prolonging the life of women with ovarian cancer. / Ph. D.
|
146 |
The Omental Fat Band as an Immunomodulatory Microenvironment for Ovarian CancerCohen, Courtney A. 11 June 2013 (has links)
Cancer research is evolving. Historically concerned with the mechanisms by which malignant cells circumvent cell death signaling and maintain unchecked proliferation, focus has shifted to the complex interactions between the tumor cell and the surrounding microenvironment. Ovarian cancer has one of the highest incidence-to-death ratios of all cancers, and is typically asymptomatic until the later stages, often resulting in metastasis prior to discovery. Naturally occurring phenotypes like lactation and child-bearing (parity) reduce ovarian cancer incidence, but the mechanisms are not understood. As the primary site for ovarian cancer metastasis, and a secondary lymphoid organ capable of mounting potent innate and adaptive immune responses, we believe the omental fat band (OFB) provides a unique opportunity to study complex interactions within the tumor microenvironment. Additionally, we hypothesize that once understood, leukocyte populations within the OFB could be modulated to disrupt the pro-tumorigenic cascade. Using fluorescence-activated cell sorting (FACS) and quantitative realtime PCR (qRT-PCR), we comparatively evaluated the changes in the compositional immune profile of the OFB as a result of parity and cancer. Parous mice were associated with a reduction in macrophages and neutrophils in the OFB, resulting in an inherent "protective state" that was refractory to metastatic cancer cell growth after intraperitoneal implantation. This indicates that the leukocyte populations within the
OFB play an important role in tumor development. Therefore we utilized the potent TH1-type immunomodulatory cytokine IL-12 in a membrane-bound form to circumvent reported side effects, such as hepatic and renal damage, cardiotoxicity and death. Targeted IL-12 delivery to the OFB resulted in delayed disease development, although not protection from subsequent challenge. This was also associated with a reduction tumor-associated macrophages (TAMs) and neutrophils (TANs) within the OFB. Kinetic studies demonstrated that these changes were induced by a significant reduction in neutrophil and macrophage chemoattractants early on in the pro-tumorigenic cascade (7 days post-implantation). This work demonstrates that the OFB is a functionally plastic tissue that can be harnessed and re-mobilized to display an anti-tumorigenic microenvironment. / Ph. D.
|
147 |
The prognostic significance of specific HOX gene expression patterns in ovarian cancerKelly, Z., Moller-Levet, C., McGrath, S., Butler-Manuel, S., Madhuri, T.K., Kierzek, A.M., Pandha, H.S., Morgan, Richard, Michael, A. 25 May 2016 (has links)
Yes / HOX genes are vital for all aspects of mammalian growth and differentiation, and their dysregulated expression is related to ovarian carcinogenesis. The aim of the current study was to establish the prognostic value of HOX dysregulation as well as its role in platinum resistance. The potential to target HOX proteins through the HOX/PBX interaction was also explored in the con-text of platinum resistance. HOX gene expression was determined in ovarian cancer cell lines and primary EOCs by QPCR, and compared to expression in normal ovarian epithelium and fallopian tube tissue samples. Statistical analysis included one-way ANOVA and t-tests, using statistical software R and GraphPad. The analysis identified 36 of the 39 HOX genes as being overex-pressed in high grade serous EOC compared to normal tissue. We detected a molecular HOX gene-signature that predicted poor outcome. Overexpression of HOXB4 and HOXB9 was identified in high grade serous cell lines after platinum resistance developed. Targeting the HOX/PBX dimer with the HXR9 peptide enhanced the cytotoxicity of cisplatin in platinum-resistant ovarian cancer. In conclusion, this study has shown the HOX genes are highly dysregulated in ovarian cancer with high expression of HOXA13, B6, C13, D1 and D13 being predictive of poor clinical outcome. Targeting the HOX/PBX dimer in platinum–resistant cancer represents a potentially new therapeutic option that should be further developed and tested in clinical trials. / This research was supported by GRACE, a gynaecological charity based in Surrey, UK.
|
148 |
Engrailed-2 (EN2) - a novel biomarker in epithelial ovarian cancerMcGrath, S.E., Annels, N., Madhuri, T.K., Tailor, A., Butler-Manuel, S.A., Morgan, Richard, Pandha, H., Michael, A. 03 October 2018 (has links)
Yes / Background: Epithelial ovarian cancer is a common malignancy, with no clinically approved diagnostic biomarker.
Engrailed-2 (EN2) is a homeodomain-containing transcription factor, essential during embryological neural
development, which is dysregulated in several cancer types. We evaluated the expression of EN2 in Epithelial
ovarian cancer, and reviewed its role as a biomarker.
Methods: We evaluated 8 Epithelial ovarian cancer cell lines, along with > 100 surgical specimens from the Royal
Surrey County Hospital (2009–2014). In total, 108 tumours and 5 normal tissue specimens were collected. En2
mRNA was evaluated by semi-quantitative RT-PCR. Histological sub-type, and platinum-sensitive/−resistant status
were compared. Protein expression was assessed in cell lines (immunofluorescence), and in > 150 tumours
(immunohistochemistry).
Results: En2 mRNA expression was elevated in serous ovarian tumours compared with normal ovary (p < 0.001),
particularly in high-grade serous ovarian cancer (p < 0.0001) and in platinum-resistant tumours (p = 0.0232). Median
Overall Survival and Progression-free Survival were reduced with high En2 expression (OS = 28 vs 42 months,
p = 0.0329; PFS = 8 vs 27 months; p = 0.0004). Positive cytoplasmic EN2 staining was demonstrated in 78% of
Epithelial ovarian cancers, with absence in normal ovary. EN2 positive high-grade serous ovarian cancer
patients had a shorter PFS (10 vs 17.5 months; p = 0.0103).
Conclusion: The EN2 transcription factor is a novel ovarian cancer biomarker. It demonstrates prognostic
value, correlating with worse Overall Survival and Progression-free Survival. It is hoped that further work will
validate its use as a biomarker, and provide insight into the role of EN2 in the development, progression and
spread of ovarian cancer. / Oncology Research and Development Departments at the Royal Surrey County Hospital and the University of Surrey
|
149 |
Influence of Terminal Functionality on the Crystal Packing Behaviour and Cytotoxicity of Aromatic OligoamidesDelfosse, Pierre, Seaton, Colin C., Male, L., Lord, Rianne M., Pike, Sarah J. 09 December 2021 (has links)
Yes / The synthesis and characterization of three aromatic oligoamides, constructed from the same pyridyl carboxamide core but incorporating distinct end groups of acetyl (Ac) 1, tert-butyloxycarbonyl (Boc) 2 and amine 3 is reported. Single crystal X-ray diffraction analysis of 1-3 and a dimethylsulfoxide (DMSO) solvate of 2 (2-DMSO), has identified the presence of a range of intra- and intermolecular interactions including N-H⋯N, N-H⋯O=C and N-H⋯O=S(CH3)2 hydrogen-bonding interactions, C-H⋯π interactions and off-set, face-to-face stacking π-π interactions that support the variety of slipped stack, herringbone and cofacial crystal packing arrangements observed in 1-3. Additionally, the cytotoxicity of this series of aromatic oligoamides was assessed against two human ovarian (A2780 and A2780cisR), two human breast (MCF-7 and MDA-MB-231) cancerous cell lines and one non-malignant human epithelial cell line (PNT-2), to investigate the influence of the terminal functionality of these aromatic oligoamides on their biological activity. The chemosensitivity results highlight that modification of the terminal group from Ac to Boc in 1 and 2 leads to a 3-fold increase in antiproliferative activity against the cisplatin-sensitive ovarian carcinoma cell line, A2780. The presence of the amine termini in 3 gave the only member of the series to display activity against the cisplatin-resistance ovarian carcinoma cell line, A2780cisR. Compound 2 is the lead candidate of this series, displaying high selectivity towards A2780 cancer cells when compared to non-malignant PNT-2 cells, with a selectivity index value >4.2. Importantly, this compound is more selective towards A2780 (cf. PNT-2) than the clinical platinum drugs oxaliplatin by > 2.6-fold and carboplatin by > 1.6-fold. / University of Bradford Development Fund; University of Birmingham - Birmingham Fellowship; UKRI Future Leaders Fellowship (MR/T041315/1); UKRI Future Leaders Fellowship (MR/S035486/2)
|
150 |
The Impact of Stromal Cells on the Metabolism of Ovarian Cancer Cells in 3D CulturePyne, Emily Seton 03 February 2017 (has links)
Ovarian cancer is the leading cause of death among female gynecologic cancers. Current treatments include surgical debulking, and chemotherapy. However, better interventions are needed to reduce the mortality rate of metastatic disease. Ovarian cancer cells have displayed the ability to aggregate and form 3D homogeneous and heterogeneous spheroids, which can function as micrometastases. Ovarian cancer spheroids survive independently prior to adhering to an endothelial tissue. Since aggregation has been shown to provide a survival advantage to the spheroids and increased their aggressive phenotype, this study aimed to investigate how the metabolism of ovarian cancer cells change in 3-dimensional (3D) culture. Examining metabolic pathways and identifying markers of metabolic change could provide the scientific base for new, targeted interventions for this disease. Spheroids of both homogeneous and heterogeneous composition demonstrated overall lower metabolic capacity than their adherent counterparts. Spheroids had a lower basal energetic demand than adherent cells, paralleled by lower maximal respiration capacity, glycolytic capacity, and spare respiratory capacity. We conclude that the lower energetic demand of spheroids may be a mechanism to prolong death by reserving energy and metabolic cellular processes; this may render anti-metabolic drug treatment with AICAR or metformin ineffective against disseminating ovarian cancer aggregates. / Master of Science / Ovarian cancer is currently the leading cause of death among female gynecologic cancers. While treatments exist, better interventions are needed to reduce the mortality rate in this form of cancer. Ovarian cancer cells have displayed the ability to aggregate and form 3D homogeneous and heterogeneous spheroids, which can function as micrometastases. Ovarian cancer spheroids survive independently prior to adhering to an endothelial tissue. Since aggregation has been shown to provide a survival advantage to the spheroids and increased their aggressive phenotype, this study aims to investigate how the metabolism of ovarian cancer cells change in 3- dimensional (3D) culture. Examining metabolic pathways and identifying markers of metabolic change could provide the scientific base for new, targeted interventions for this disease.
|
Page generated in 0.0209 seconds