• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 46
  • 42
  • 30
  • 18
  • 14
  • 8
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 452
  • 452
  • 70
  • 60
  • 59
  • 51
  • 38
  • 35
  • 33
  • 32
  • 29
  • 29
  • 27
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Role of PAX2 in Maintaining the Differentiation of Oviductal Epithelium and Inhibiting the Transition to a Stem Cell State

Alwosaibai, Kholoud January 2016 (has links)
Several studies have proposed the fallopian tube epithelium as a site of origin of ovarian cancer. The discovery of precursor lesions in the fallopian tube in patients at risk for ovarian cancer supports a probable origin for high-grade serous ovarian carcinoma in this tissue. While the fallopian tube epithelium consists of three distinct cell types, the paired box protein 2 (PAX2) positive cells and potentially the CD44 positive stem-like cells are most relevant to ovarian cancer. Loss of PAX2 expression in the fallopian tube cells is considered to be an early event in epithelial transformation, but the specific role of PAX2 in this transition is unknown. The aim of this study was to define the role of PAX2 in oviductal epithelial cells (OVE) cells and in mouse ovarian surface epithelial cells (MOSE), and to understand its contribution to the formation of serous precursor lesions in the fallopian tubes. Herein, we studied the OVE response to transforming growth factor β (TGFβ, a cytokine found in follicular fluid) and provide evidence of its potential involvement in the regulation of stem cell-like behaviors that may contribute to formation of cancer-initiating cells. Treatment of primary cultures of OVE cells with TGFβ at concentrations found in ovulatory follicular fluid induced an epithelial-mesenchymal transition (EMT) with expected changes in proliferation, cell morphology and expression of SNAIL, Vimentin and E-cadherin. EMT was also associated with decreased expression of PAX2 and an increase in the fraction of cells expressing CD44. Pax2 knockdown in OVE cells and overexpression in ovarian epithelial cells confirmed that PAX2 inhibits CD44 expression and regulates the degree of epithelial differentiation of OVE cells. These results suggest that the loss of PAX2 seen in serous tubal intraepithelial carcinomas (STIC) leads to a shift to a more mesenchymal phenotype associated with stem-like features. Pax2 overexpression in MOSE cells also induced the formation of vascular channels both in vitro and in vivo, which indicate a possible contribution of PAX2 to ovarian cancer progression by increasing the vascular channels to supply nutrients to the tumor cells. Furthermore, since loss of PAX2 in STIC was found associated with P53 and BRCA1 mutations, OVE cells with mutations of the tumor suppressor genes Trp53 and Brca1 were studied. We found that loss of Trp53 with or without loss of Brca1 increased cell proliferation and colony formation in vitro. In addition, loss of Trp53 induced OVE cells to undergo EMT and induced the expression of stem cell–associated genes. We therefore suggest a potential contribution of stem cells in initiating the precursor lesions in the fallopian tubes in combination with tumor suppressor gene mutation.
62

Identification of novel microRNAs as potential biomarkers for the early diagnosis of ovarian cancer using an in-silico approach

Zahra, Latib January 2019 (has links)
Philosophiae Doctor - PhD / Ovarian cancer (OC) is the most fatal gynaecologic malignancy that is generally diagnosed in the advanced stages, resulting in a low survival rate of about 40%. This emphasizes the need to identify a biomarker that can allow for accurate diagnosis at stage I. MicroRNAs (miRNAs) are appealing as biomarkers due to their stability, non-invasiveness, and differential expression in tumour tissue compared to healthy tissue. Since they are non-coding, their biological functions can be uncovered by examining their target genes and thus identifying their regulatory pathways and processes. This study aimed to identify miRNAs and genes as candidate biomarkers for early stage OC diagnosis, through two distinct in silico approaches. The first pipeline was based on sequence similarity between miRNAs with a proven mechanism in OC and miRNAs with no known role. This resulted in 9 candidate miRNAs, that have not been previously implicated in OC, that showed 90-99% similarity to a miRNA involved in OC. Following a series of in silico experimentations, it was uncovered that these miRNAs share 12 gene targets that are expressed in the ovary and also have proven implications in the disease. Since the miRNAs target genes contribute to OC onset and progression, it strengthens the notion that the miRNAs may be dysregulated as well. Using TCGA, the second pipeline involved analysing patient clinical data along with implementing statistical measures to isolate miRNAs and genes with high expression in OC. This resulted in 26 miRNAs and 25 genes being shortlisted as the potential candidates for OC management. It was also noted that targeting interactions occur between 15 miRNAs and 16 genes identified through this pipeline. In total, 35 miRNAs and 37 genes were identified from both pipelines.
63

Finding Combination of Features from Promoter Regions for Ovarian Cancer-related Gene Group Classification

Olayan, Rawan S. 12 1900 (has links)
In classification problems, it is always important to use the suitable combination of features that will be employed by classifiers. Generating the right combination of features usually results in good classifiers. In the situation when the problem is not well understood, data items are usually described by many features in the hope that some of these may be the relevant or most relevant ones. In this study, we focus on one such problem related to genes implicated in ovarian cancer (OC). We try to recognize two important OC-related gene groups: oncogenes, which support the development and progression of OC, and oncosuppressors, which oppose such tendencies. For this, we use the properties of promoters of these genes. We identified potential “regulatory features” that characterize OC-related oncogenes and oncosuppressors promoters. In our study, we used 211 oncogenes and 39 oncosuppressors. For these, we identified 538 characteristic sequence motifs from their promoters. Promoters are annotated by these motifs and derived feature vectors used to develop classification models. We made a comparison of a number of classification models in their ability to distinguish oncogenes from oncosuppressors. Based on 10-fold cross-validation, the resultant model was able to separate the two classes with sensitivity of 96% and specificity of 100% with the complete set of features. Moreover, we developed another recognition model where we attempted to distinguish oncogenes and oncosuppressors as one group from other OC-related genes. That model achieved accuracy of 82%. We believe that the results of this study will help in discovering other OC-related oncogenes and oncosuppressors not identified as yet.
64

The evolution of hyperthermic intraperitoneal chemotherapy in the setting of advanced ovarian cancer

Quindlen, Kevin John 14 June 2019 (has links)
Ovarian cancer is the second most common, and first most lethal gynecological cancer. It will affect one in seventy-eight women, and is commonly diagnosed in the later stages of the disease. The majority of the cancer’s lifespan is spent within the peritoneal cavity. Hyperthermic intraperitoneal chemotherapy (HIPEC) is an innovative new treatment that has been proven as an effective treatment in other peritoneal cancers. There is strong scientific evidence to support HIPEC as an ideal treatment for advanced ovarian cancer. Over the past two decades, there has been an increase in the number of studies focused on the efficacy of HIPEC with regards to advanced ovarian cancer. These studies have shown great promise, with two very recent phase III studies showing resounding results. It is also clear that there is a need for standardization throughout these scientific studies in order to reasonably introduce HIPEC as a standard of treatment.
65

Contactless Dielectrophoresis towards Drug Screening and Microdevice Development for Cell Sorting

Elvington, Elizabeth Ashcraft Savage 08 July 2013 (has links)
Firstly, this work demonstrates that contactless dielectrophoresis (cDEP) was useful to detect a reversal in the electrical phenotype of late-stage ovarian cancer cells to a profile similar to that of slow-growing early-stage ovarian epithelial cells after treatment with a non-toxic bioactive metabolite, sphingosine. Current chemotherapeutics are highly toxic to patients and can cause severe adverse side effects, so non-toxic treatments that could slow or reverse cancer growth would be advantageous. This is the first instance of cDEP for detecting induced changes in cell structure, showing its potential as a rapid, non-biomarker-based drug screening platform. Specifically, low frequency contactless dielectrophoresis devices previously designed by Sano et al were used to extract the crossover frequency and specific membrane capacitance of early and late stage mouse ovarian surface epithelial (MOSE-E and MOSE-L) cells when untreated, treated with the anti-cancer sphingosine (So) metabolite and with a generally cancer-supporting sphingosine-1-phosphate (S1P) metabolite. The specific membrane capacitance of MOSE-L cells treated with So decreased and the normalized crossover frequency increased to levels matching MOSE-E cells. Secondly, a new multilayer cDEP device featuring curved interdigitated electrode channels overlaying a straight sample channel for the purpose of cell sorting was designed, computationally modeled, fabricated, and tested. The goal of this design was to achieve continuous multi-stream sorting of cells, and preliminary testing demonstrated that prostate cancer PC3 cells were continuously deflected toward the top of the channel under an electric field, as predicted by the numerical model. / Master of Science
66

Hospital Based Traceback of Ovarian Cancer Patients: a Feasibility Study

Weinmann, Simone Marin January 2021 (has links)
No description available.
67

The Monkey in the Wrench: MiR-181a's Role in Promoting Adipogenesis and Ovarian Cancer Transformation

Knarr, Matthew J. 23 May 2019 (has links)
No description available.
68

Modulating Lipid Flux Sensitizes Tumours in a Fatty Tumour Microenvironment to Oncolytic Virus Therapy

Abera, Surendran 14 July 2022 (has links)
No description available.
69

To Evaluate the Function of the Oxytocin Receptor in the Context of Ovarian Cancer Cell Microenvironment to Determine if Oxytocin can Induce an Anti-Inflammatory Response

Schachner, Benjamin I 01 January 2017 (has links)
The treatment of most cancers can still be considered inadequate despite the steady progress being made. A prime example of this issue is with epithelial ovarian cancers; this disease presents a significant issue, with a 5-year survival rate of 46% and a survival rate of 28% in patients that develop metastatic disease. Since ovarian cancer has such a high mortality rate, effective treatment modalities are necessary to prolong the quality of life after diagnosis. Psychosocial stress is related to the progression, proliferation, and migration in cancer patients, but the mechanisms of this relationship are not fully understood. The present in vitro study investigated the ability of oxytocin, a neuropeptide associated with social support, to attenuate the stress response. Catecholamines, a subclass of stress hormones, were used to simulate the stress induced inflammation process in ovarian cancer cells. To evaluate oxytocin’s capacity to attenuate the stress response, the ovarian cancer cell lines SKOV3, HEYA8, OVCAR8, and OV432 were separately treated with the presence or absence of catecholamines with the addition of oxytocin. Protein expression of the oxytocin receptor was investigated using a western blot protocol. Oxytocin receptor, oxytocin, and IL-6 mRNA expression was evaluated by quantitative PCR. Treatment with Oxytocin attenuated the inflammatory response resulting from catecholamine treatment. The oxytocin receptor gene and protein were present in each cell line, suggesting that oxytocin has an anti-inflammatory role in the tumor microenvironment in ovarian cancer patients. These results provide a mechanism by which social support, working through the release of oxytocin, promotes an anti-inflammatory process in ovarian cancer patients. This study may shed light into new pharmacological approaches for the treatment of ovarian cancer.
70

Effect of progesterone and RU486 on cisplatin resistance in OV2008 and C13 ovarian epithelial cancer cell lines

Calderon-Salgado, Esther Lilia 18 April 2008 (has links)
No description available.

Page generated in 0.0329 seconds