• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of Geographical and Environmental Structures on Habitat Choice, Metapopulation Dynamics and Genetic Structure for Hazel Grouse (<i>Bonasa bonasia</i>)

Sahlsten, Jonas January 2007 (has links)
<p>In this work suitable habitats for hazel grouse (<i>Bonasa bonasia</i>) were identified using ecological niche factor analysis (ENFA). The results from ENFA reveal that hazel grouse utilize a different and more restricted niche than what is generally available in the study area. When a landscape is fragmented the amount of edge increases, which is negative for many species and thus will affect the amount of available area. The perimeter-area ratio was used to analyze the relative importance of geometric shape. In order to estimate a correlation between incidence of hazel grouse and landscape features census data and land cover maps were analyzed with logistic regression models. It is concluded that hazel grouse is tied to coniferous forest and avoid open areas. However, the result indicates that there is a scale effect that should be considered. The amount of edge in a landscape seems to be important and shape of patches could be a better measure in metapopulation dynamics. In this study the Incidence function model was used to estimate occupancy levels and capacity of a landscape to sustain a metapopulation according to four different area measurement scenarios. Results from the simulations indicate that perimeter-area related measures of patch size combined with capacity could be a more important measure for estimation of population dynamics compared to a basic area measurement. Using a landscape genetic approach, hazel grouse genetic structure, neighbourhood size and dispersal distance were estimated. Genetic estimates of dispersal were in concordance with previous ecological estimates. The results indicate evidence of a population structure reminiscent of what has been found in many other Scandinavian animals with a basic north-south divide. No evidence was found that geographic and environmental structures affected gene flow and dispersal patterns for the hazel grouse.</p>
2

Impact of Geographical and Environmental Structures on Habitat Choice, Metapopulation Dynamics and Genetic Structure for Hazel Grouse (Bonasa bonasia)

Sahlsten, Jonas January 2007 (has links)
In this work suitable habitats for hazel grouse (Bonasa bonasia) were identified using ecological niche factor analysis (ENFA). The results from ENFA reveal that hazel grouse utilize a different and more restricted niche than what is generally available in the study area. When a landscape is fragmented the amount of edge increases, which is negative for many species and thus will affect the amount of available area. The perimeter-area ratio was used to analyze the relative importance of geometric shape. In order to estimate a correlation between incidence of hazel grouse and landscape features census data and land cover maps were analyzed with logistic regression models. It is concluded that hazel grouse is tied to coniferous forest and avoid open areas. However, the result indicates that there is a scale effect that should be considered. The amount of edge in a landscape seems to be important and shape of patches could be a better measure in metapopulation dynamics. In this study the Incidence function model was used to estimate occupancy levels and capacity of a landscape to sustain a metapopulation according to four different area measurement scenarios. Results from the simulations indicate that perimeter-area related measures of patch size combined with capacity could be a more important measure for estimation of population dynamics compared to a basic area measurement. Using a landscape genetic approach, hazel grouse genetic structure, neighbourhood size and dispersal distance were estimated. Genetic estimates of dispersal were in concordance with previous ecological estimates. The results indicate evidence of a population structure reminiscent of what has been found in many other Scandinavian animals with a basic north-south divide. No evidence was found that geographic and environmental structures affected gene flow and dispersal patterns for the hazel grouse.
3

Influência da paisagem e das características locais na ocorrência do Mico-Leão-Preto (Leontopithecus Chrysopygus, Callitrichidae) / Influence of the landscape and characteristics of the area on the occurrence of the Black Lion Tamarin (Leontopithecus Chrysopygus, Callitrichidae)

Pinto, Bruna Lopes [UNESP] 02 June 2017 (has links)
Submitted by BRUNA LOPES PINTO null (brunalopes111@gmail.com) on 2017-08-02T13:08:31Z No. of bitstreams: 1 Bruna_Lopes Pinto_defesa de mestrado.pdf: 1828198 bytes, checksum: f87153ba517dc4a0051e0058362a5ed3 (MD5) / Rejected by Luiz Galeffi (luizgaleffi@gmail.com), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo: O arquivo submetido está sem a ficha catalográfica e sem o certificado de aprovação. O número do processo FAPESP deve constar nos agradecimentos da dissertação/tese. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2017-08-03T17:34:36Z (GMT) / Submitted by BRUNA LOPES PINTO null (brunalopes111@gmail.com) on 2017-08-12T19:37:28Z No. of bitstreams: 1 Bruna_Lopes Pinto_defesa_mestrado.pdf: 2556419 bytes, checksum: a7f4d02a3a6803b418af5a8a09394fc8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-08-18T18:55:19Z (GMT) No. of bitstreams: 1 pinto_bl_me_rcla.pdf: 2556419 bytes, checksum: a7f4d02a3a6803b418af5a8a09394fc8 (MD5) / Made available in DSpace on 2017-08-18T18:55:19Z (GMT). No. of bitstreams: 1 pinto_bl_me_rcla.pdf: 2556419 bytes, checksum: a7f4d02a3a6803b418af5a8a09394fc8 (MD5) Previous issue date: 2017-06-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O bioma Mata Atlântica possui alta diversidade de primatas e com alto grau de endemismo, porém grande parte desses primatas estão ameaçados devido à grande modificação da paisagem. O mico-leão-preto (Callitrichidae, Leontopithecus chrysopygus) é uma espécie endêmica do Estado de São de Paulo, ameaçada de extinção, que ocorre na Mata Atlântica e cuja detecção é difícil por ser de pequeno porte, críptico e ocorrer em baixa densidade. Para poder implementar programas de conservação eficazes, é necessário o conhecimento das áreas de ocorrência da espécie assim como das características ambientais que favorecem sua ocupação. Este trabalho tem como objetivo determinar as características da paisagem e locais que influenciam a ocupação e detecção do mico-leão preto. Através do playback, foi realizado o levantamento dos micos-leões-pretos em 16 sítios amostrais, com 3 pontos em cada um e 3 repetições (uma por mês, Maio-Julho de 2016). Coletamos dados sobre as características locais (largura dos pontos amostrais, diâmetro à altura do peito das árvores, estratificação e presença de gado) e da paisagem (conectividade funcional, quantidade de densidade de borda, cobertura vegetal, tipo de matriz e distância à Estação Ecológica de Angatuba) em cada ponto amostral. As características foram obtidas através dos programas ArcGis, Grass e Google Earth Pro, além da ajuda de um botânico para algumas características locais. O modelo de ocupação (verossimilhança), através da análise de padrão-de única estação (standard-singleseason) pelo programa PRESENCE ® versão 11.8, foi utilizado para encontrar as características que melhor explicam a ocupação e detecção do mico-leão-preto. A ocupação foi de 26% e a detecção de 75%. As características da paisagem foram as que influenciaram tanto na ocupação quanto na detecção. A ocupação dos micos-leões-pretos foi associada à quantidade de áreas florestais, que obteve uma relação positiva, a mesma também encontrada para a detectabilidade. Todavia, a detecção apresentou outra característica (quantidade de densidade de borda), que em lugares mais alterados (com efeito de borda) podem apresentar uma vantagem em relação à locais mais conservados (mais fechados), auxiliando na propagação do som e facilitando a procura do mico no campo. Assim, ao identificar as principais características que influenciam a ocupação dos micos-leões-pretos, outros locais podem ser estimados e as áreas florestais priorizadas e com as medidas mitigadoras mais direcionadas para a preservação e conservação da espécie juntamente com seus hábitats. / The Atlantic Forest biome presents high primate diversity and high degree of endemism, but most of these primates are threatened habitat fragmentation. The black lion tamarin (Callitrichidae, Leontopithecus chrysopygus) is an endemic species of the State of São Paulo, threatened with extinction, occurring in the Atlantic Forest and whose detection is difficult because it is small, cryptic and occurs in low density. In order to implement effective conservation programs, it is necessary to know the areas of occurrence of the species as well as the environmental characteristics that favor their presence. This work aims to determine local and landscape characteristics that influence the occupancy and detection of the black lion tamarin. We used the playback methodology to find the primates in 16 sites samples with 3 points in each and 3 replicates (one per month, May-July 2016). It was collect data from local (width of sampling points, diameter at breast height, stratification and presence of cattle) and landscape characteristics (functional connectivity, amount of border density, vegetation cover, type of matrix and distance to the Ecological Station of Angatuba) at each sampling point. The characteristics were from ArcGis, Grass and Google Earth Pro software, and also from a botanist. The occupation model (likelihood), through standard-single-season (standardsingle-season) using the PRESENCE ® version 11.8 software, helped to find which characteristics best explain the occupation and detection of the black lion tamarin. The occupation was 26% and the detection was 75%. The characteristics of the landscape were those that influenced both (occupation and detection). The occupation of the black lion tamarins was associated to the number of forest areas, which obtained a positive relation, the same also it was find for detectability. However, the detection presented another characteristic (amount of edge density), which shows that in more altered sites (with border effect) can present an advantage over the more conserved (more closed) sites, helping the propagation of the sound and facilitating the search of the black lion tamarin in the field. Thus, identifying the main characteristics that influence the occupation of black lion tamarins, other sites can be estimate, forest areas can be prioritized and mitigating measures for the preservation and conservation of the species along with their habitats. / FAPESP: 2014/14739-0
4

Implications of Stand Adjacency and Edge for Birds in a Managed Forest Ecosystem

Foggia, Jennifer Rose 11 December 2015 (has links)
Managed forest ecosystems contribute to conservation of wildlife, and generally yield heterogeneous landscapes with patches that support different sessile organisms. Edges or boundaries between adjacent forest patches are often ecologically distinct from patch interiors and can have direct influences on community dynamics and ecosystem functioning near them. To quantify effects of edge and adjacent habitat conditions on avian metrics, I used a hierarchical multi-species occupancy model that considered individual species resource requirements to estimate community occupancy patterns, and used artificial nest surveys to model daily nest survival (DNS) using a Bayesian framework. Results indicated that adjacent forest conditions influenced bird population dynamics in focal forest stands, provided little evidence of an edge effect on avian community response patterns, and showed highest DNS in newly established forest stands. My results highlight the importance of considering type and spatial arrangement of different habitat patches for habitat planning operations on managed forest landscapes.
5

Assessing the Influence of Prescribed Fire on Faunal Communities in a Pyric Landscape

Jorge, Marcelo Haidar 31 January 2020 (has links)
Understanding the link between environmental factors such as disturbance events, land cover, and soil productivity to spatial variation in animal distributions and vital rates is fundamental to population ecology and wildlife management. The Longleaf pine (Pinus palustris; hereafter, LLP) ecosystem is an archetypal fire-mediated ecosystem, which has seen drastic reductions in land area due to fire suppression. Current restoration utilizes prescribed fire and hardwood removal, but more research is needed to understand the influence of these restoration efforts on the wildlife that exist in that ecosystem. As such, we conducted field surveys on Camp Blanding Joint Training Center and Wildlife Management Area to understand how fire influences relative abundances of mammalian predators, occupancy and species richness of avian species, guilds and communities, and vital rates of white-tailed deer (Odocoileus viginianus) fawns. Our results indicated that mammalian predator space use, and avian species richness were influenced by fire and land cover. Mammalian predator space use was altered by fire conditions and land cover. This mechanism may support predator management strategies that utilizes commonly management techniques for the restoration and conservation of the LLP ecosystem to indirectly alter predator distributions, which has the potential to positively affect the management of important species within this ecosystem. Some mammalian mesocarnivores historically common throughout the southeastern United States were rarely detected, suggesting more research is needed to identify the cause of the potential decline in mesocarnivores in the Southeastern United States. Avian species richness at the community level was positively influenced by the heterogeneity of post fire conditions, or pyrodiversity. Avian species richness of the cavity nesting guild was negatively influenced by increasing time-since-fire. Our results suggest that managers can promote avian community diversity by reducing the size of burn units to create areas with multiple adjacent burn units, with unique fire histories and a mosaic of post-fire conditions. Lastly, fawn recruitment was greater on the higher productivity site than the low productivity site on CB. However, within sites soil productivity did not have a demonstrable effect. In fact, we observed differences between sites, but did not observe any effects of covariates on spatial variation in density or survival of fawns within sites. Although we did not explicitly test the factors influencing our parameters between sites, we hypothesize that the variation in coyote activity rates as well as soil productivity and its subsequent effects (i.e. forage availability, concealment cover, and land cover type) likely drove the differences we saw between sites. These results are relevant to local managers and provide support for unit-specific, deer management on CB. In conclusion, understanding the influence of fire in a frequently burned landscape allows us to better inform management of predators and avian communities using prescribed burns, and the differences in deer populations between areas allowed us to better in inform managers on harvest quotas so that the magnitude of the effect of harvest can better match the population vital rates of each area. / Master of Science / Understanding the link between environmental factors such as fire, land cover and soil productivity is essential for wildlife managers to maintain healthy wildlife populations. The Longleaf pine (Pinus palustris) ecosystem requires frequent fire and has seen drastic reductions in land area due to fire suppression. Current restoration utilizes prescribed fire, controlled burning of an area, and hardwood removal, logging hardwood trees such as oaks, but more research is needed to understand how this restoration influences the wildlife in the longleaf pine ecosystem. As such, we collected data collected from Camp Blanding Joint Training Center and Wildlife Management Area to understand how fire influences the relative numbers of mammalian predators, the distribution and species richness (i.e. number of unique species) of avian species, guilds and communities, and vital rates (i.e. births, survival to a certain age) of white-tailed deer fawns. Our results indicated that mammalian predator distributions, and avian species richness were influenced by fire and land cover. Mammalian predator space use was altered by fire conditions and landcover, which supports a predator management strategy that utilizes prescribed burning and hardwood removal used in restoration and conservation of the LLP ecosystem to indirectly alter predator distributions. Some mammalian mesocarnivores (i.e. foxes, skunks, weasels, etc.) historically common throughout the southeastern United States were rarely detected, suggesting more research is needed to identify the cause of the potential decline of cryptic mesocarnivores in the Southeastern United States. Avian species richness, number of unique species, at the community level was positively influenced by pyrodiversity, the number of unique burn years in an area. This supports and further extends the 'pyrodiversity begets biodiversity' hypothesis for avian species, which states that greater pyrodiversity increases the diversity of bird species in that area. Avian species richness of cavity nesting birds decreased with increasing time since fire. Our results suggest that managers can promote avian community diversity by reducing the size of burn units to create areas with multiple adjacent burn units, with unique fire histories and a mosaic of post-fire conditions. Lastly, fawn recruitment was greater on the higher productivity site than the low productivity site, however, within sites soil productivity did not seem to influence birth and recruitment. Although we did not statistically test the factors influencing our parameters between sites, we hypothesize that the variation in coyote activity rates as well as soil productivity and its subsequent effects (i.e. forage availability, concealment cover, and land cover type) likely drove the differences we saw between sites. These results are relevant to local managers and provide support for managing deer differently across both sites. In conclusion, understanding the influence of fire in a frequently burned landscape allows us to better inform management of predators and avian communities using prescribed burns, and the differences in deer populations between areas allowed us to better in inform managers on harvest quotas so that the magnitude of the effect of harvest can better match the population vital rates of each area.
6

Determining Habitat Associations of Virginia and Carolina Northern Flying Squirrels in the Appalachian Mountains from Bioacoustic and Telemetry Surveys

Diggins, Corinne Ashley 23 August 2016 (has links)
The Virginia northern flying squirrel (Glaucomys sabrinus fuscus) and the Carolina northern flying squirrel (G. s. coloratus) are geographically isolated subspecies of the northern flying squirrel found in montane conifer-northern hardwood forests the Appalachian Mountains of the eastern United States. Both subspecies were listed under the Endangered Species Act in 1985 as endangered, and accordingly, the Virginia northern flying squirrel and the Carolina northern flying squirrel are considered high conservation priorities by state and federal agencies. Although the listing prompted work to determine the broad distribution and habitat associations of both subspecies, numerous data gaps remain, particularly with regard to habitat management and development of efficient monitoring techniques. Regional interest in restoration of red spruce (Picea rubens) forests in the central and southern Appalachian Mountains, considered to be the flying squirrels' primary habitat, increases the importance of understanding habitat selection and managers' ability to detect squirrels at multiple spatial and temporal scales. I compared two novel survey techniques (ultrasonic acoustics and camera trapping) to a traditional technique (live trapping) to determine which method had higher probability of detection (POD) and lower latency to detection (LTD, number of survey nights to initial detection) of northern flying squirrels in the region. Both novel techniques performed better than the traditional techniques with higher POD and lower LTD. I found that ultrasonic acoustics and camera trapping had similar POD, whereas LTD was significantly lower with ultrasonic acoustics versus camera trapping. Additionally, the ability to distinguish between northern flying squirrels and the parapatric southern flying squirrel (G. volans) also is possible with ultrasonic acoustics, but not with camera trapping. This ultimately makes ultrasonic acoustics the most effective and efficient method to obtain detection/non-detection data. To better inform management decisions and activities (i.e., red spruce restoration), this method should be used in conjunction with existing traditional monitoring techniques that provide demographic data such as nest boxes. I assessed habitat selection of radio-collared Virginia and Carolina northern flying squirrels at multiple spatial scales with use-availability techniques. I analyzed field data from paired telemetry and random points and determined Virginia northern flying squirrels microhabitat (within-stand habitat) selection showed preference for conifer-dominant stands with deep organic horizons, a factor that might be directly linked to food (hypogeal fungi) availability. Similar to previous studies on the Virginia northern flying squirrel on the landscape- and stand-level using Euclidean distance based analysis, Carolina northern flying squirrels also selectively preferred montane conifer forests in greater proportion than their availability on the landscape. Additionally, Carolina northern flying squirrels did not select for or against northern hardwood forests regardless of availability on the landscape. Habitat preference of both subspecies indicates that red spruce restoration activities may be important for the persistence of Appalachian northern flying squirrels into an uncertain future, as anthropogenic climate change may cause further reduction of the quality and extent of high-elevation montane conifer forests in the region. / Ph. D.
7

Habitat models to predict wetland bird occupancy influenced by scale, anthropogenic disturbance, and imperfect detection

Glisson, Wesley J., Conway, Courtney J., Nadeau, Christopher P., Borgmann, Kathi L. 06 1900 (has links)
Understanding species-habitat relationships for endangered species is critical for their conservation. However, many studies have limited value for conservation because they fail to account for habitat associations at multiple spatial scales, anthropogenic variables, and imperfect detection. We addressed these three limitations by developing models for an endangered wetland bird, Yuma Ridgway's rail (Rallus obsoletus yumanensis), that examined how the spatial scale of environmental variables, inclusion of anthropogenic disturbance variables, and accounting for imperfect detection in validation data influenced model performance. These models identified associations between environmental variables and occupancy. We used bird survey and spatial environmental data at 2473 locations throughout the species' U.S. range to create and validate occupancy models and produce predictive maps of occupancy. We compared habitat-based models at three spatial scales (100, 224, and 500 m radii buffers) with and without anthropogenic disturbance variables using validation data adjusted for imperfect detection and an unadjusted validation dataset that ignored imperfect detection. The inclusion of anthropogenic disturbance variables improved the performance of habitat models at all three spatial scales, and the 224-m-scale model performed best. All models exhibited greater predictive ability when imperfect detection was incorporated into validation data. Yuma Ridgway's rail occupancy was negatively associated with ephemeral and slow-moving riverine features and high-intensity anthropogenic development, and positively associated with emergent vegetation, agriculture, and low-intensity development. Our modeling approach accounts for common limitations in modeling species-habitat relationships and creating predictive maps of occupancy probability and, therefore, provides a useful framework for other species.
8

Occupancy Analysis of Small Carnivores in Ankarafantsika National Park, Madagascar

Flanigan, Kelly 01 June 2020 (has links)
No description available.
9

Pine Barrens Wildlife Management: Exploring the Impact of a Stressor and Active Management on Two Taxa at Camp Edwards

Gordon, Andrew B, Jr 01 September 2023 (has links) (PDF)
Mandated by the Sikes Act of 1960, natural resource managers work to manage the habitats and wildlife that are found on military installations in the United States and Territories. At Camp Edwards Military Training Reservation (hereby abbreviated to Camp Edwards), (Bourne, MA), such wildlife includes the state-protected eastern box turtle (Terrapene carolina carolina) and the declining prairie warbler (Setophaga discolor), which both occupy pine barrens. In 2020, natural resource managers at Camp Edwards noticed that eastern box turtles were being infected by myiasis, which occurs when flesh flies deposit larvae into the living tissue of a vertebrate host. In the literature, it has been documented that several ectothermic hosts respond to disease or parasite infection through a phenomenon referred to as ‘behavioral fever’ by moving to warmer locations to raise their internal temperature. Behavioral fever may clear the infection faster because higher body temperatures can induce parasite mortality or prevent secondary infections. However, it is unclear if myiasis induces behavioral fever in eastern box turtles or impacts other aspects of their behavior, such as habitat use. In Chapter 1, I compare behavior and habitat characteristics of myiasis infected and noninfected eastern box turtles at Camp Edwards. I radio-tracked 48 turtles weekly from May to August 2022. Upon capture, I recorded their infection status, shell surface temperature, and capture location habitat characteristics: understory vegetation, basal area, and canopy closure. I used generalized linear models and linear models to compare body condition indexes, shell temperatures, habitat use, and movement distances between infection statuses, sexes, and age classes. I found that myiasis infection had no significant effect on any variable other than shell surface temperature, which suggests infected turtles may be exhibiting behavioral fever. A second species of great concern at Camp Edwards are prairie warblers. Prairie warblers occupy early successional forests, which means that habitat management could have a direct impact on the distribution and abundance of this species. Despite declining populations regionally, prairie warbler populations at Camp Edwards have increased in the last few years. In Chapter 2, I analyze the effect of management projects (i.e., prescribed fire and mechanical projects) on prairie warbler colonization, extinction, and detection probabilities at Camp Edwards. I found that colonization was significantly predicted by the number of years since management and the proportion of the following vegetation cover types at a site: grassland, disturbed land, pitch pine – oak forest, and pitch pine – scrub oak community. I also found that extinction was significantly predicted by the proportion of pitch pine – scrub oak community at a site. Lastly, I found that detection probability was significantly predicted by the year of observation and the proportion of the following vegetation cover types: grassland, pitch pine – oak forest, and pitch pine – scrub oak community. These results can help managers predict how prairie warbler populations respond to management projects at Camp Edwards.
10

Assessing the Long-term Impacts of White-nose Syndrome on Bat Communities Using Acoustic Surveys at Fort Drum Military Installation

Nocera, Tomas 12 June 2018 (has links)
With declines in abundance and changing distribution of White-nose Syndrome (WNS)-affected bat species, increased reliance on acoustic monitoring is now the new "normal". As such, the ability to accurately identify individual bat species with acoustic identification programs has become increasingly important. Additionally, how bat distribution and habitat associations have changed at the local to sub-landscape scale in the post WNS environment is important to understand. The significance of these changes, relative to bat activity, may be based on the species-specific susceptibility to WNS. We used data collected from Fort Drum Military Installation, New York from the summers of 2003-2017 to analyze the accuracy of acoustic software programs, and assess the changes in relative bat activity, occupancy, and distribution induced by WNS. Our results indicate that continued acoustic monitoring of bat species, such as the little brown bat (Myotis lucifugus) in the Northeast, to assess ongoing temporal and spatial changes, habitat associations, and as a guide to direct future mist-netting should rely more on relative activity as the metric of choice. Furthermore, the continuous spread of WNS across North America will have strong negative effects on bat populations and communities, this study points to how individual species (both impacted and non-impacted) will respond to WNS. We believe that our results can help users choose automated software and MLE thresholds more appropriate for their needs to accurately address potential changes in communities of bat species due to impacts of WNS or other factors. / MS

Page generated in 0.4576 seconds