• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 10
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Comparison of electricity production between semi-submersible and spar-buoy floating offshore wind turbines

Saracevic, Nermina January 2018 (has links)
The paper compares electricity production between the semi-submersible and the spar-buoy floating wind turbine systems under normal, stochastic and extreme wind conditions at Utsira Nord site located on the Norwegian continental shelf in the North Sea. The analysis of complex behavior of the floating wind turbine system and the fluid-structure interaction is performed in aero-servo-hydro-elastic code ASHES. The results indicate a slightly better energy performance of the semi-submersible than the spar in all load cases but one. The pitch and heave degrees of freedom are evaluated as the most relevant for the power output. It is shown that pitch and heave platform motions have smaller displacement in the semi-submersible floater than in the spar under average environmental conditions and at the rated wind speed operating range. The simulation also confirmed that the energy yield is very sensitive to the magnitude of the loads: the spar performed best under mild environmental conditions, while the semi-submersible was better under medium environmental conditions. Small difference in energy yield is attributed to the same baseline blade and external controller properties used for both floaters where generator torque was kept constant to limit the power excursions above the rated power. The method proposed under this paper has demonstrated that a good approximation of the energy performance of the floating wind turbine system can be performed in a fast and effective manner.
12

On Design and Analysis of a Novel Transverse Flux Generator for Direct-driven Wind Application

Svechkarenko, Dmitry January 2010 (has links)
This thesis deals with the analysis of a permanent magnet synchronous generator suited for direct-drivenwind turbines inmegawatt class. The higher specific torque and power density of a transverse flux permanent magnet machine in comparison to conventional radial-flux machines make it a promising solution for direct-driven wind turbine generators. The novel transverse flux generator investigated in this work would allow a better utilization of the available nacelle space due to its more compact construction. The major part of the thesis deals with the finite element analysis and analytical calculations of transverse flux generators. The computations are performed for single units of the basic transverse flux topology (BTFM) and the one utilizing iron bridges (IBTFM). As the selection of the pole length in a transverse flux machine affects the pole-to-pole flux leakage and thus its performance, the topologies have been analyzed with respect to the varying dimensions in the direction of movement. The topologies utilizing IBTFM have been found to be superior to the BTFM with respect to the flux linkage (by 110%) and utilization of the magnets (by 84%). The machines with longest magnets gave the largest flux linkage, while machines with short magnets should be preferred for better magnet utilization. The four sets of dimensions have been selected for a dynamic finite element analysis. The power factor is evaluated for the topologies with the varying dimensions in the peripheral plane in static finite element analysis. The performance of the topologies with the best power factor in the studied range (0.62 in the BTFM and 0.57 in the IBTFM), as well as the topologies that give the highest power factor to magnet volume ratio, is compared with the dynamic simulations.The electromagnetic and cogging forces of the transverse-flux generator are estimated. The IBTFM is superior to the BTFM with respect to the force production, where the three-phase electromagnetic force is twice as large as in the BTFM. The force ripples of the three-phase electromagnetic force are found to be insignificant in both topologies. An analytical procedure based on the results from the finite element simulations is applied for evaluation of the transverse flux generators with different shapes and topologies. The effectiveness of each topology is investigated based on the estimation of the torque production in a certain nacelle volume. A toroidal generator with the iron-bridge topology is the most compact alternativefor a wind turbine as it has the highest torque-per-volume ratio. Furthermore, the analyticalmodel, including evaluation of the synchronous inductance, is developed and compared with the results obtained in the threedimensional finite element analysis. Themodel provides a good agreement for the studied set of dimensions. / QC 20101109
13

Suction caissons in sand as tripod foundations for offshore wind turbines

Senders, Marc January 2009 (has links)
[Truncated abstract] The demand for offshore wind turbines is increasing in densely populated areas, such as Europe. These constructions are typically founded on a gravity foundation or a large 'mono pile'. Gravity foundations can only be used at locations where strong soils exist and water depths are limited. Costs associated with a 'mono pile' type foundation contribute to a very large percentage of the total investment costs. This research, therefore, focuses upon a different foundation for offshore wind turbines, namely suction caissons beneath a tripod. This foundation can be used in all kinds of soil types and is cheaper than the 'mono pile' foundation, both in the amount of steel used and installation costs. Cheaper foundations can contribute to a more competitive price for offshore wind energy in comparison with other energy resources. To date, there have been relatively few studies to investigate the behaviour of this type of foundation during the installation process and during operational and ultimate loading for seabed conditions comprising dense sand. Two types of investigations were performed during this research to determine the behaviour of suction caissons beneath a tripod. Firstly, an existing computer program was extended to predict the typical loading conditions for a tripod foundation. Secondly, centrifuge tests on small scale suction caissons were performed to investigate the behaviour during the installation and loading phases. The computer program developed helped to quantify the likely ranges of environmental loading on an offshore wind turbine. For a typical 3 MW wind turbine of 90 m height, the vertical load is low at around 7 MN. During storm conditions the horizontal hydrodynamic load can be in the order of 4 MN. During normal working conditions the horizontal aerodynamic loads can reach 0.4 MN, but can increase to 1.2 MN when the pitch system malfunctions and gusts reach 30 m/s. This aerodynamic load will result in a very large contribution to the overturning moment, due to the high action point of this load. When the wind turbine is placed on top of a tripod, these large moments are counteracted by a push-pull system. ... The development of differential pressure was found to depend on the soil permeability, the extraction speed and a consolidation effect. During cyclic loading no obvious signs of a decrease in resistance were observed. During very fast cyclic loading differential pressures developed, which could increase the drained frictional resistance by approximately 40%. All centrifuge tests results were used to develop methods to predict or back calculate the installation process of suction caissons in sand and layered soil, and the behaviour during tensile and cyclic loading. These methods all use the cone resistance as the main input parameter and predict the force (or required suction) as a function of time, for a given rate of pumping or uplift displacement, in addition to the variation of suction with penetration (or force with uplift displacement). These new methods provide a useful tool in designing a reliable foundation for offshore wind turbines consisting of a tripod arrangement of suction caissons embedded in dense sand.
14

Studium a ověřování vlastností sběracího ústrojí generátorů pro větrné elektrárny / : STUDY AND VERIFICATION OF PROPERTIES PICK – UP GENERATORS FOR WIND POWER

Glogar, Jaroslav January 2018 (has links)
This master thesis deals with study of properties pick-up generators for wind power. First part of thesis studies wind turbines, its structure, generators and describes advantages and disadvantages of ashore and offshore location. The next part presents description of parts of sliding contact. The main part assesses the impact of sea environment on sliding contact in generators at offshore wind turbines.
15

Load Reduction of Floating Wind Turbines using Tuned Mass Dampers

Stewart, Gordon M 01 January 2012 (has links) (PDF)
Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to accomplish this wind integration, offshore wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. To capitalize on high speed and high quality winds over deep water, floating platforms for offshore wind turbines have been developed, but they suffer from greatly increased loading. One method to reduce loads in offshore wind turbines is the application of structural control techniques usually used in skyscrapers and bridges. Tuned mass dampers are one structural control system that have been used to reduce loads in simulations of offshore wind turbines. This thesis adds to the state of the art of offshore wind energy by developing a set of optimum passive tuned mass dampers for four offshore wind turbine platforms and by quantifying the effects of actuator dynamics on an active tuned mass damper design. The set of optimum tuned mass dampers are developed by creating a limited degree-of-freedom model for each of the four offshore wind platforms. These models are then integrated into an optimization function utilizing a genetic algorithm to find a globally optimum design for the tuned mass damper. The tuned mass damper parameters determined by the optimization are integrated into a series of wind turbine design code simulations using FAST. From these simulations, tower fatigue damage reductions of between 5 and 20% are achieved for the various TMD configurations. A previous study developed a set of active tuned mass damper controllers for an offshore wind turbine mounted on a barge. The design of the controller used an ideal actuator in which the commanded force equaled the applied force with no time lag. This thesis develops an actuator model and conducts a frequency analysis on a limited degree-of-freedom model of the barge including this actuator model. Simulations of the barge with the active controller and the actuator model are conducted with FAST, and the results are compared with the ideal actuator case. The realistic actuator model causes the active mass damper power requirements to increase drastically, by as much as 1000%, which confirms the importance of considering an actuator model in controller design.
16

Investigation de nouvelles technologies de générateurs pour les éoliennes offshore / Investigation of new generator technologies for offshore wind turbines

Benhamida, Mohammed Ali 30 May 2018 (has links)
Ce mémoire de thèse constitue une contribution à l'investigation des génératrices destinées à une application éolienne en mer. Le but est de rechercher les solutions optimales dans un domaine de recherche vaste contenant entre huit et onze variables d'optimisation, tout en respectant un cahier de charge bien précis. Afin d'y parvenir, un modèle multi-physique a été développé permettant la détermination des distributions du champ électromagnétique et de température dans les topologies de génératrices choisies avec prise en considération des non-linéarités des matériaux. La méthode des constantes localisées couplée aux fonctions d'interpolations a été choisie comme solution offrant un bon rapport temps de calculs/précision, prenant ainsi en considération les caractéristiques des matériaux (thermiques et magnétiques). Le modèle développé a été couplé à un algorithme d'optimisation génétique, NSGAII, permettant dans un premier temps ; d'investiguer le poids nécessaire des aimants permanents et des parties actives de deux topologies de génératrices synchrones à aimant permanent où dans la première les aimants sont montés en surfaces et dans la seconde insérés en concentration de flux, trois puissances différentes ont été investiguées 5, 8 et 15 [MW]. Dans un second temps, l'intégration d'un multiplicateur de vitesse magnétique dans la chaîne de conversion éolienne a été étudiée à travers la même approche optimale utilisée précédemment tout en comparant le poids nécessaires des aimants permanents pour ce type d'entrainement avec celle des topologies à attaque directe (sans multiplicateur de vitesse). / The aim of this PhD report is the investigation of electrical generators dedicated to an offshore wind turbine application. The main goal is to find optimal solutions in a vast research domain containing between eight and eleven optimization variables, while respecting a the imposed constraints. In order to achieve this goal, a multi-physics model was developed allowing the determination of the electromagnetic and temperature fields distributions in the selected topologies. Lumped models coupled to the interpolation functions were chosen as a solution offering a good computation time / precision ratio, thus taking into consideration the characteristics of the materials (thermal and magnetic). The developed model was coupled to a genetic optimization algorithm, NSGAII, allowing at first; the investigation of the necessary permanent magnets weight and the active parts one of two permanent magnet synchronous generator topologies where in the first the magnets are mounted in surfaces and in the second inserted in order to have flux concentration, three different powers have been investigated 5, 8 and 15 [MW]. Second, the integration of a magnetic gear in the wind energy conversion chain was studied using the same optimal approach previously used, while comparing the weight required of permanent magnets for this type of training with that of direct drive topologies (without gearbox).
17

Static and seismic responses of pile-supported marine structures under scoured conditions

Jiang, Wenyu 30 November 2021 (has links)
Scour is a process of removing soils around foundations by currents and waves. For the pile-supported marine structures such as the monopile-supported offshore wind turbines (OWTs) and the pile-supported bridges, scour can decrease the pile capacities and alter the dynamic responses of the structures. At present, there is not a widely accepted method to estimate pile axial or lateral capacity under scoured conditions. For example, different recommendations are used among the existing design standards for estimation of the vertical effective stress and the resulting capacities for single piles under different scour conditions. None of the existing standards or design practice has even considered the scour effects on the behavior of pile groups. Furthermore, the investigation into the responses of piles under multiple hazards of scour and earthquakes is rarely reported. To address the foregoing limitations, this study first introduces an analytical solution to determining the vertical effective stress of soils around single isolated piles under scoured conditions and uses it to examine the limitations of the existing standards in estimation of pile tensile capacity (Chapter 1). The effect of soil-pile interface friction is highlighted. Next, the study proposes new approaches to investigating the combined effects of scour and earthquakes on the lateral responses of the monopile-supported OWTs in sand (Chapter 2) and soft clay (Chapter 3). Lastly, simple and practical methods are developed based on the p-y curve framework for analyzing the lateral responses of pile groups in sand (Chapter 4) and soft clay (Chapter 5) subjected to static lateral loading. The proposed methods in this study were encoded into a series of open-source computer scripts for engineering practice. They were verified with the 3D continuum finite element (FE) analyses. Using the proposed methods, standard methods, and 3D FE method, parametric analyses were conducted to investigate the scour effects on the lateral behavior of the monopile-supported OWTs under crustal earthquakes and that of the pile groups under static loading. The factors considered in the parametric study included effects of scour-hole dimensions, soil stress history, soil density, soil-pile interface behavior, soil liquefaction potential, pile group configurations, etc. Through the parametric analyses, the standard methods were critically assessed by comparing the results to those calculated by the proposed methods and 3D FE methods, and some design-related issues were also discussed. / Graduate
18

CENTRIFUGE MODELLING AND NUMERICAL SIMULATION OF NOVEL HYBRID FOUNDATIONS FOR OFFSHORE WIND TURBINES

Li, Xinyao 07 September 2020 (has links)
No description available.
19

On analytical modeling and design of a novel transverse flux generator for offshore wind turbines

Svechkarenko, Dmitry January 2007 (has links)
The object of this thesis is to develop a cost effective direct-driven wind generator suited for offshore wind turbines. As the generator price is a complicated function dependent on many parameters, the emphasis is mainly put on reduction of the weight of active materials, such as copper, laminated steel, permanent magnets, and electrical insulation. The higher specific torque and power density of a transverse flux permanent magnet (TFPM) machine in comparison to conventional radial-flux machines make it a promising solution for direct-driven wind turbine generators. The novel TFPM generator investigated in this work due to its possibly more compact construction would allow a better utilization of the available nacelle space. The analytical model, including evaluation of the synchronous inductance, is developed and applied in parametric study of a 5 MW wind turbine generator. The influence of the design variables with respect to the analyzed characteristics is investigated. A number of machines that have approximately the same performances are found. These machines are compared and the optimal ranges for the main parameters are suggested. One possible design topology is presented in more details with dimensions and main characteristics. This generator is compared with radial-flux generators with surface-mounted and tangentially-polarized magnets. It is found that the analyzed TFPM generator would favor a smaller outer diameter, reduced total active weight, and reduced weight of the magnet material. The TFPM would however require a longer axial length. TFPM generators with a broader range of output power have also been investigated. Generators rated 3, 5, 7, 10, and 12 MW are analyzed and their characteristics with respect to the output power are compared. The novel transverse flux topology has been found to be promising for low-speed hightorque applications, such as direct-driven wind turbines in the multi-megawatt range. / QC 20101118
20

Wind-Wave Misalignment Effects on Multiline Anchor Systems for Floating Offshore Wind Turbines

Rose, Doron T 03 April 2023 (has links) (PDF)
Multiline anchors are a novel way to reduce the cost of arrays of floating offshore wind turbines (FOWTs), but their behavior is not yet fully understood. Through metocean characterization and dynamic simulations, this thesis investigates the effects of wind-wave misalignment on multiline anchor systems. Four coastal U.S. sites are characterized in order to develop IEC design load cases (DLCs) and analyze real-world misaligned conditions. Stonewall Bank, Oregon showed the highest 500-year extreme wave height, at 16.6 m, while Virginia Beach, Virginia showed the highest 500-year wind speed, at 56.8 m/s. Misalignment probability distributions, at all sites, are found to converge towards zero (aligned conditions) and become less variable as wind speed increases. This indicates that high misalignment angles are unlikely at high wind speeds. A simulation parameter study, spanning a range of wave directions, misalignment angles, and DLCs, is run in OpenFAST to explore how misalignment affects multiline anchor loading. The simulated anchor is connected to three IEA 15 MW FOWT models via a taut mooring system. The force on the multiline anchor is calculated by summing the three tension vectors from the mooring lines. The mean direction of this force is found to align closely with the wind; each mean is within 5.5° of the wind direction. Higher misalignment angles cause increases to the amount of directional variation about this mean. The magnitude of the multiline force is also examined. Mean force level is found to be nearly unaffected by misalignment. However, maximum force decreases significantly as misalignment angle increases, dropping as much as 23.3% in extreme conditions. This confirms current anchor design practice, which treats aligned metocean conditions as the peak load an anchor experiences. Standard deviation of multiline force also decreases with misalignment. The operational load case, DLC 1.6, shows a slight trend towards this, but the extreme case, SLC, shows a more pronounced drop of 32.4%. This suggests that anchor cyclic loading analyses could benefit from considering misalignment. Doing so could lead to lower estimates of the cyclic loading amplitudes that anchor designs must withstand, thus leading to smaller, cheaper anchors.

Page generated in 0.0525 seconds