• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Numerical study of nonlinear free-surface flows

Muthedath, Premkumar 21 July 2009 (has links)
Nonlinear free-surface flows generated by the motion of a surface-piercing body in an ideal fluid are studied. A numerical scheme employing a mixed Eulerian-Lagrangian approach and involving time stepping is used to simulate the flow. At each time step, the boundary value problem is solved using the Complex Boundary Element Method. The numerical performance of the method is studied by considering cases where the exact solution is known. Computational results for the impulsive wavemaker problem and the wedge entry problem for wedges of half-angles up to 15 degrees are presented. The obtained results are found to be in good agreement with existing analytical and numerical solutions. / Master of Science
12

Dynamically installed anchors for floating offshore structures

Richardson, Mark Damian January 2008 (has links)
The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors have been proposed as a cost-effective anchoring solution for floating offshore structures in deep water environments. The rocket or torpedo shaped anchor is released from a designated drop height above the seafloor and allowed to penetrate the seabed via the kinetic energy gained during free-fall and the anchor’s self weight. Dynamic anchors can be deployed in any water depth and the relatively simple fabrication and installation procedures provide a significant cost saving over conventional deepwater anchoring systems. Despite use in a number of offshore applications, information regarding the geotechnical performance of dynamically installed anchors is scarce. Consequently, this research has focused on establishing an extensive test database through the modelling of the dynamic anchor installation process in the geotechnical centrifuge. The tests were aimed at assessing the embedment depth and subsequent dynamic anchor holding capacity under various loading conditions. Analytical design tools, verified against the experimental database, were developed for the prediction of the embedment depth and holding capacity.
13

Nonlinear oscillations, bifurcations and chaos in ocean mooring systems

Gottlieb, Oded 03 December 1991 (has links)
Complex nonlinear and chaotic responses have been recently observed in various compliant ocean systems. These systems are characterized by a nonlinear mooring restoring force and a coupled fluid-structure interaction exciting force. A general class of ocean mooring system models is formulated by incorporating a variable mooring configuration and the exact form of the hydrodynamic excitation. The multi-degree of freedom system, subjected to combined parametric and external excitation, is shown to be complex, coupled and strongly nonlinear. Stability analysis by a Liapunov function approach reveals global system attraction which ensures that solutions remain bounded for small excitation. Construction of the system's Poincare map and stability analysis of the map's fixed points correspond to system stability of near resonance periodic orbits. Investigation of nonresonant solutions is done by a local variational approach. Tangent and period doubling bifurcations are identified by both local stability analysis techniques and are further investigated to reveal global bifurcations. Application of Melnikov's method to the perturbed averaged system provides an approximate criterion for the existence of transverse homoclinic orbits resulting in chaotic system dynamics. Further stability analysis of the subharmonic and ultraharmonic solutions reveals a cascade of period doubling which is shown to evolve to a strange attractor. Investigation of the bifurcation criteria obtained reveals a steady state superstructure in the bifurcation set. This superstructure identifies a similar bifurcation pattern of coexisting solutions in the sub, ultra and ultrasubharmonic domains. Within this structure strange attractors appear when a period doubling sequence is infinite and when abrupt changes in the size of an attractor occur near tangent bifurcations. Parametric analysis of system instabilities reveals the influence of the convective inertial force which can not be neglected for large response and the bias induced by the quadratic viscous drag is found to be a controlling mechanism even for moderate sea states. Thus, stability analyses of a nonlinear ocean mooring system by semi-analytical methods reveal the existence of bifurcations identifying complex periodic and aperiodic nonlinear phenomena. The results obtained apply to a variety of nonlinear ocean mooring and towing system configurations. Extensions and applications of this research are discussed. / Graduation date: 1992
14

Comportamento dinamico de riser rigido em catenaria devido a vibração induzida por vortices em aguas profundas / Dynamic behavior of steel catenary riser due to vortex induced vibration in dreepwater

Tsukada, Raphael Issamu, 1983- 13 August 2018 (has links)
Orientador: Celso Kazuyuki Morooka / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica e Instituto de Geociencias / Made available in DSpace on 2018-08-13T09:48:02Z (GMT). No. of bitstreams: 1 Tsukada_RaphaelIssamu_M.pdf: 4706299 bytes, checksum: b217ddb6687b4f89959018a445ff1dee (MD5) Previous issue date: 2009 / Resumo: O presente trabalho tem como objetivo principal caracterizar o comportamento dinâmico de risers em configuração catenária (SCR) sob os efeitos do fenômeno da vibração induzida por vórtices (VIV). Estes estudos foram realizados através de experimentos e simulações numéricas. O experimento foi realizado com modelo de SCR em escala reduzida em um tanque de provas sob várias condições simuladas do ambiente, variando a velocidade do carro dinamométrico, a amplitude dos movimentos impostos no topo do modelo, amplitudes e períodos de ondas. As simulações numéricas foram realizadas usando um modelo de VIV criado para a avaliação de risers rígidos verticais. Modificações para o modelo foram implementadas de forma a considerar a inclinação do riser em relação ao escoamento e os movimentos apresentados pela SCR. Os resultados experimentais e numéricos apresentaram algumas características de comportamento semelhantes aos dos risers utilizados para grandes lâminas da água, verificados por outros pesquisadores, tais como: os altos harmônicos da freqüência de desprendimento de vórtices e o comportamento misto de standing e travelling waves. Uma boa concordância foi observada comparação entre os resultados experimentais e numéricos. / Abstract: The primary objective of this work is to characterize the dynamic behavior of steel catenary risers (SCR) under the effects of the Vortex-Induced Vibration (VIV) phenomenon. This study was conducted applying both experimental and numerical approaches. A SCR model test was performed in a towing tank under several simulated environment condition combinations such as; varying the towing speed, riser top forced oscillation amplitudes and surface wave characteristics. Numerical simulations were computed using an empirical VIV model created for the evaluation of top tensioned vertical rigid risers. Modifications to the model were implemented to allow consideration for the inclination of the riser relative to the fluid flow and the movement of the SCR. The experimental e numerical results present some dynamic behavior characteristics similar to that of deep sea risers found by others researcher mainly high harmonics of the vortex shedding frequency and a mix of standing and traveling wave behavior. Results from the comparison of experimental and numerical results have shown a good agreement. / Mestrado / Explotação / Mestre em Ciências e Engenharia de Petróleo
15

Effect of structural motion on the hydrodynamic forcing of offshore steel structures

Laya, Enrique J January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 124-127. / by Enrique J. Laya. / M.S.
16

Numerical study of geotechnical penetration problems for offshore applications

Zhou, Hongjie January 2008 (has links)
The research carried out in this thesis has concentrated on the application of numerical solutions to geotechnical penetration problems in offshore engineering. Several important issues closely relevant to deep-water oil and gas developments were investigated, covering installation of suction caisson foundations, interpretation of fullflow penetrometers and shallow penetration of a cylindrical object (submarine pipeline or T-bar), all in clayey sediments such as are often encountered in deep-water sites. These problems are commonly characterised by large vertical movements of structural elements relative to the seabed. A large deformation finite element method was adopted and further developed to simulate these challenging problems, referred to as Remeshing and Interpolation Technique with Small Strain. In this approach, a sequence of small strain Lagrangian increments, remeshing and interpolation of stresses and material properties are repeated until the required displacement has been reached. This technique is able to model relative motion between the penetrating objects and the soil, which is critical for evaluating soil heave inside the caissons, the effect of penetration-induced remoulding on the resistance of full-flow penetrometers, and influence of soil surface heave on the embedment of pipelines. '...' Simple expressions were presented allowing the resistance factors for the T-bar and ball penetrometers to be expressed as a function of the rate and strain-softening parameters. By considering average strength conditions during penetration and extraction of these full-flow penetrometers, an approximate expression was derived that allowed estimation of the hypothetical resistance factor with no strain-softening, and hence an initial estimate of the stain-rate dependency of the soil. Further simulations of cyclic penetration tests showed that a cyclic range of three diameters of the penetrometers was sufficient to avoid overlap of the failure mechanism at the extremes and mid-point of the cyclic range. The ball had higher resistance factors compared with the T-bar, but with similar cyclic resistance degradation curves, which could be fitted accurately by simple expressions consistent with the strain-softening soil model adopted. Based on the curve fitting, more accurate equations were proposed to deduce the resistance factor with no strain-softening, compared with that suggested previously based on the resistances measured in the first cycle of penetration and extraction. The strain-rate dependency was similar in intact or post-cyclic soil for a given rate parameter. The resistance factor for the post-cyclic condition was higher than that for the initial conditions, to some degree depending upon soil sensitivity and brittleness parameter. For the shallow penetration of a cylindrical object, the penetration resistance profile observed from centrifuge model tests was very well captured by the numerical simulation. The mechanism of shear band shedding was reproduced by the numerical technique, although the frequency of the shear band generation and the exact shape of the heave profile were not correctly captured, which were limited by the simple strainsoftening soil model adopted.
17

An investigation into wave run-up on vertical surface piercing cylinders in monochromatic waves

Morris-Thomas, Michael January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] Wave run-up is the vertical uprush of water when an incident wave impinges on a free- surface penetrating body. For large volume offshore structures the wave run-up on the weather side of the supporting columns is particularly important for air-gap design and ultimately the avoidance of pressure impulse loads on the underside of the deck structure. This investigation focuses on the limitations of conventional wave diffraction theory, where the free-surface boundary condition is treated by a Stokes expansion, in predicting the harmonic components of the wave run-up, and the presentation of a simplified procedure for the prediction of wave run-up. The wave run-up is studied on fixed vertical cylinders in plane progressive waves. These progressive waves are of a form suitable for description by Stokes' wave theory whereby the typical energy content of a wave train consists of one fundamental harmonic and corresponding phase locked Fourier components. The choice of monochromatic waves is indicative of ocean environments for large volume structures in the diffraction regime where the assumption of potential flow theory is applicable, or more formally A/a < Ο(1) (A and a being the wave amplitude and cylinder radius respectively). One of the unique aspects of this work is the investigation of column geometry effects - in terms of square cylinders with rounded edges - on the wave run-up. The rounded edges of each cylinder are described by the dimensionless parameter rc/a which denotes the ratio of edge corner radius to half-width of a typical column with longitudinal axis perpendicular to the quiescent free-surface. An experimental campaign was undertaken where the wave run-up on a fixed column in plane progressive waves was measured with wire probes located close to the cylinder. Based on an appropriate dimensional analysis, the wave environment was represented by a parametric variation of the scattering parameter ka and wave steepness kA (where k denotes the wave number). The effect of column geometry was investigated by varying the edge corner radius ratio within the domain 0 <=rc/a <= 1, where the upper and lower bounds correspond to a circular and square shaped cylinder respectively. The water depth is assumed infinite so that the wave run-up caused purely by wave-structure interaction is examined without the additional influence of a non-decaying horizontal fluid velocity and finite depth effects on wave dispersion. The zero-, first-, second- and third-harmonics of the wave run-up are examined to determine the importance of each with regard to local wave diffraction and incident wave non-linearities. The modulus and phase of these harmonics are compared to corresponding theoretical predictions from conventional diffraction theory to second-order in wave steepness. As a result, a basis is formed for the applicability of a Stokes expansion to the free-surface boundary condition of the diffraction problem, and its limitations in terms of local wave scattering and incident wave non-linearities. An analytical approach is pursued and solved in the long wavelength regime for the interaction of a plane progressive wave with a circular cylinder in an ideal fluid. The classical Stokesian assumption of infinitesimal wave amplitude is invoked to treat the free-surface boundary condition along with an unconventional requirement that the cylinder width is assumed much smaller than the incident wavelength. This additional assumption is justified because critical wavelengths for wave run-up on a fixed cylinder are typically much larger in magnitude than the cylinder's width. In the solution, two coupled perturbation schemes, incorporating a classical Stokes expansion and cylinder slenderness expansion, are invoked and the boundary value problem solved to third-order. The formulation of the diffraction problem in this manner allows for third-harmonic diffraction effects and higher-order effects operating at the first-harmonic to be found. In general, the complete wave run-up is not well accounted for by a second-order Stokes expansion of the free-surface boundary condition and wave elevation. This is however, dependent upon the coupling of ka and kA. In particular, whilst the modulus and phase of the second-harmonic are moderately predicted, the mean set-up is not well predicted by a second-order Stokes expansion scheme. This is thought to be caused by higher than second-order non-linear effects since experimental evidence has revealed higher-order diffraction effects operating at the first-harmonic in waves of moderate to large steepness when k < < 1. These higher-order effects, operating at the first-harmonic, can be partially accounted for by the proposed long wavelength formulation. For small ka and large kA, subsequent comparisons with measured results do indeed provide a better agreement than the classical linear diffraction solution of Havelock (1940). To account for the complete wave run-up, a unique approach has been adopted where a correction is applied to a first-harmonic analytical solution. The remaining non-linear portion is accounted for by two methods. The first method is based on regression analysis in terms of ka and kA and provides an additive correction to the first-harmonic solution. The second method involves an amplification correction of the first-harmonic. This utilises Bernoulli's equation applied at the mean free-surface position where the constant of proportionality is empirically determined and is inversely proportional to ka. The experimental and numerical results suggest that the wave run-up increases as rc/a--› 0, however this is most significant for short waves and long waves of large steepness. Of the harmonic components, experimental evidence suggests that the effect of a variation in rc/a on the wave run-up is particularly significant for the first-harmonic only. Furthermore, the corner radius effect on the first-harmonic wave run-up is well predicted by numerical calculations using the boundary element method. Given this, the proposed simplified wave run-up model includes an additional geometry correction which accounts for rc/a to first-order in local wave diffraction. From a practical view point, it is the simplified model that is most useful for platform designers to predict the wave run-up on a surface piercing column. It is computationally inexpensive and the comparison of this model with measured results has proved more promising than previously proposed schemes.
18

Modelling of wave impact on offshore structures

Abdolmaleki, Kourosh January 2007 (has links)
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.
19

Structural reliability of offshore wind turbines

Agarwal, Puneet, 1977- 31 August 2012 (has links)
Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the load random variable(s) conditional on the environment are integrated with the joint probability distribution of environmental random variables (from wind, waves, current etc.) to obtain the so-called “long-term" distribution, from which long-term loads may be obtained for any return period. The accurate prediction of long-term extreme loads for offshore wind turbines, using efficient extrapolation procedures, is our main goal. While loads data, needed for extrapolation, are obtained by simulations in a design scenario, field data can be valuable for understanding the offshore environment and the resulting turbine response. We use limited field data from a 2MW turbine at the Blyth site in the United Kingdom, and study the influence of contrasting environmental (wind) regimes and associated waves at this site on long-term loads, derived using extrapolation. This study also highlights the need for efficient extrapolation procedures and for modeling nonlinear waves at sites with shallow water depths. An important first step in extrapolation is to establish robust short-term distributions of load extremes. Using data from simulations of a 5MW onshore turbine model, we compare empirical short-term load distributions when two alternative models for extremes--global and block maxima--are used. We develop a convergence criterion, based on controlling the uncertainty in rare load fractiles, which serves to assess whether or not an adequate number of simulations has been performed. To establish long-term loads for a 5MW offshore wind turbine, we employ an inverse reliability approach, which is shown to predict reasonably accurate long-term loads, compared to a more expensive direct integration approach. We show that blade pitching control actions can be a major source of response variability, due to which a large number of simulations may be required to obtain stable tails of short-term load distributions, and to predict accurate ultimate loads. We address model uncertainty as it pertains to wave models. We investigate the effect of using irregular nonlinear (second-order) waves, compared to irregular linear waves, on loads for an offshore wind turbine. We incorporate this nonlinear irregular wave model into a procedure for integrated wind-wave-response analysis of offshore wind turbines. We show that computed loads are generally somewhat larger with nonlinear waves and, hence, that modeling nonlinear waves is important is response simulations of offshore wind turbines and prediction of long-term loads. / text

Page generated in 0.1072 seconds