• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 16
  • 2
  • 1
  • Tagged with
  • 56
  • 34
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Synthèse enzymatique, modélisation moléculaire et caractérisation d'oligomères de flavonoïdes / Enzymatic synthesis, molecular modeling and characterization of flavonoids oligomers

Anthoni, Julie 10 December 2007 (has links)
Ce travail a pour objectif de mettre au point un procédé d’oligomérisation de rutine et d’esculine par la laccase de Trametes versicolor. Un procédé de synthèse en parallèle et d’analyse en ligne par SEC-UV et par MALDI-TOF a été mis au point. L’analyse par MALDI-TOF a révélé la formation d’un simple pontage, allant jusqu’au degré d’oligomérisation 6 pour la rutine et 9 pour l’esculine. Un pontage par liaison éther a été observé par FTIR dans le cas des oligorutines. L’analyse par RMN a démontré la mise en place de liaisons tant C-C que C-O localisées sur la partie phénolique et la partie sucre des monomères. De faibles pH et températures favorisent l’allongement de la chaîne, alors que l’augmentation de la constante diélectrique du solvant ou de la température augmente la production des oligomères de rutine. La limitation de la masse de ces oligomères serait due à une inhibition de l’enzyme, provoquée par les capacités chélatantes des oligomères. Une diminution du pouvoir antioxydant et une augmentation du pouvoir inhibiteur de la xanthine oxydase ont pu être observées lors de l’accroissement de la masse des oligomères de rutine. Ces deux activités sont améliorées lors de l’accroissement de la masse des oligomères d’esculine. Pour ces deux types d’oligomères, la solubilité dans l’eau est fortement accrue. Dans le cas des oligorutines, cette forte augmentation a été corrélée à la mise en place d’un réseau dense de liaisons hydrogène observé par modélisation moléculaire. Globalement, l’approche par modélisation moléculaire dans le vide et dans le solvant a permis de dégager des relations structure-activité, reliant notamment le nombre de liaisons hydrogène à la solubilité / The aim of this work is the elaboration of rutin and esculin oligomerization process by the laccase from Trametes versicolor. A parallel synthesis process and on-line analysis of reaction media by SEC-UV and MALDI-TOF have been elaborated. The MALDI-TOF analysis has revealed the formation of simple bridges between rutin and esculin units, up to degree of oligomerization of 6 and 9 respectively. An ether bond has been observed by FTIR spectrometry for the rutin oligomers. Finally, the NMR analysis has revealed the formation of C-C and C-O bridges both on phenolic and the sugar parts of the flavonoids. At low pH and temperature, the elongation of the chain is favored, whereas increasing the dielectric constant of the solvent or the temperature favors the production of rutin oligomers. The limitation of oligomers mass is explained by the inhibition of the enzyme, probably due to the highest chelation properties of oligomers. In the case of oligorutin, a decrease of antiradical activity and an increase of xanthine oxidase inhibitory activity have been observed when the oligomers molecular mass increases. In the case of esculin oligomers, these two activities increase with the increase of the oligomers mass. For these two types of oligomers, the water solubility is considerably increased. For the oligorutins, this augmentation has been correlated to a dense network of H-bonds, which has been demonstrated by molecular modeling. Globally, the molecular modeling approach in vacuum and in solvent has allowed to establish structure-activity relationship
52

Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPs

Héroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model. We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3). This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1. By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
53

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.
54

Assemblage oligomérique des récepteurs couplés aux protéines G avec les RAMPs

Héroux, Madeleine 03 1900 (has links)
Les récepteurs couplés aux protéines G (RCPGs) constituent la plus grande classe de récepteurs membranaires impliqués dans la transmission des signaux extracellulaires. Traditionnellement, la transmission de la signalisation par les RCPGs implique l’activation d’une protéine G hétéro-trimérique qui pourra à son tour moduler l’activité de divers effecteurs intracellulaires. Ce schéma classique de signalisation s’est complexifié au fils des années et l’on sait maintenant qu’en plus d’interagir avec les protéines G, les RCPGs s’associent avec une panoplie d’autres protéines afin de transmettre adéquatement les signaux extracellulaires. En particulier, la découverte d’une famille de protéines transmembranaires modulant la fonction des RCPGs, baptisées protéines modifiant l’activité des récepteurs (« receptor activity-modifying proteins » ; RAMPs), a changé la façon de concevoir la signalisation par certains RCPGs. Dans le cas du récepteur similaire au récepteur de la calcitonine (« calcitonin-like receptor » ; CLR), l’association avec les RAMPs permet l’acheminement à la surface cellulaire du récepteur tout en modulant ses propriétés pharmacologiques. Lorsqu’il est associé avec RAMP1, le CLR fonctionne comme un récepteur du peptide relié au gène de la calcitonine (« calcitonin gene-related peptide » ; CGRP), alors qu’il devient un récepteur de l’adrénomedulline lorsqu’il interagit avec RAMP2 ou RAMP3. D’autre part, en plus d’interagir avec des protéines accessoires transmembranaires telles les RAMPs, les RCPGs peuvent aussi s’associer entre eux pour former des oligomères de récepteurs. Dans cette thèse, nous nous sommes penchés sur les interactions entre les RCPGs et les RAMPs, et plus particulièrement sur l’interrelation entre ce type d’association RCPG/RAMP et l’assemblage en oligomères de récepteurs, en utilisant le récepteur du CGRP comme modèle d’étude. Une première étude nous a tout d’abord permis de confirmer l’interaction entre le récepteur CLR et RAMP1, dans un contexte de cellules vivantes. Nous avons démontré que ce complexe CLR/RAMP1 active la protéine G et recrute la protéine de signalisation -arrestine suite à une stimulation par le CGRP. Ensuite, nous avons déterminé que même s’il doit obligatoirement former un hétéro-oligomère avec les RAMPs pour être actif, le CLR conserve malgré tout sa capacité à interagir avec d’autres RCPGs. En plus d’observer la présence d’homo-oligomère de CLR, nous avons constaté que tout comme les RCPGs, les RAMPs peuvent eux-aussi s’associer entre eux pour former des complexes oligomériques pouvant comprendre différents sous-types (RAMP1/RAMP2 et RAMP1/RAMP3). Cette observation de la présence d’homo-oligomères de CLR et de RAMP1, nous a amené à nous questionner sur la stœchiométrie d’interaction du complexe CLR/RAMP1. Dans une deuxième étude ayant pour but d’établir la composition moléculaire du récepteur CGRP1 in vivo, nous avons développé une nouvelle approche permettant l’étude de l’interaction entre trois protéines dans un contexte de cellules vivantes. Cette technique baptisée BRET/BiFC, est basée sur le transfert d’énergie de résonance de bioluminescence entre un donneur luminescent, la Renilla luciférase, et un accepteur fluorescent, la protéine fluorescente jaune (YFP), reconstituée suite au ré-assemblage de ces deux fragments. En utilisant cette approche, nous avons pu déterminer que le récepteur CGRP1 est constitué d’un homo-oligomère de CLR interagissant avec un monomère de RAMP1. En démontrant un assemblage oligomérique asymétrique pour le récepteur CGRP1 à partir d’une nouvelle approche biophysique, nous croyons que les travaux présentés dans cette thèse ont contribué à élargir nos connaissances sur le fonctionnement de la grande famille des RCPGs, et seront utile à la poursuite des recherches sur les complexes protéiques impliqués dans la signalisation. / G protein coupled receptors (GPCRs) constitute the largest family of membrane receptors involved in signal transduction. Traditionally, signal transduction by GPCRs involves the activation of a hetero-trimeric G protein which will then modulate the activity of several intracellular effectors. We can now appreciate the fact that in addition to their interaction with G proteins, GPCRs also associate with several other proteins, in order to allow proper signal transduction. In particular, the discovery of a family of proteins called receptor activity-modifying proteins (RAMPs) has challenged the traditional views of signal transduction by some GPCRs. In the case of the calcitonin-like receptor (CLR), the association with RAMPs allows the proper cell surface targeting of the receptor in addition to modulate it’s pharmacological properties. Co-expression of CLR with RAMP1 leads to a calcitonin gene-related peptide (CGRP) receptor, whereas CLR association with RAMP2 or RAMP3 promotes the formation of an adrenomedullin receptor. In addition to their interaction with transmembrane accessory proteins such as RAMPs, GPCRs can also interact with other receptors to form receptors oligomers. In this thesis, we were interested in the interactions between GPCRs and RAMPs, and particularly, in the link between these GPCR/RAMP interactions and the assembly of receptor oligomers, using CGRP1 receptor as a model. We first confirmed the interaction between CLR and RAMP1 in living cells. We showed that this CLR/RAMP1 complex activates G proteins and recruits the signalling protein -arrestin upon CGRP stimulation. Next, we demonstrated that even if the CLR requires hetero-oligomeric assembly with RAMPs in order to be active, this receptor can still interact with other GPCRs. In addition to CLR homo-oligomers, we observed that RAMPs can also self-associate to form oligomeric complexes which can involve different subtypes (RAMP1/RAMP2 and RAMP1/RAMP3). This observation of the presence of CLR and RAMP1 homo-oligomers raised the question of the stoiechiometry of interaction of the CLR/RAMP1 complex. In order to establish the molecular composition of the CGRP1 receptor in vivo, we developed a novel approach allowing the detection of the interaction between three proteins in living cells. This method called BRET/BiFC is based on the bioluminescence resonance energy transfer between a luminescent energy donor, Renilla luciferase, and a fluorescent energy acceptor, the yellow fluorescent protein (YFP), reconstituted after the re-association of its two fragments. Using this approach, we showed that the CGRP1 receptor consist of a homo-oligomer of CLR interacting with a monomer of RAMP1. By demonstrating the asymmetrical organization of the CGRP1 receptor complex using a novel biophysical approach, we believe that the results presented herein have contributed to increase our knowledge of the mechanisms of function of the large family of GPCRs and will be useful for the pursuit of research on protein complexes involved in signalling pathways.
55

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.
56

Photochimie et oligomérisation des composés organiques biogéniques en phase aqueuse atmosphérique / Photochemistry and oligomerization of biogenic organic compounds in atmospheric aqueous phase

Renard, Pascal 25 November 2014 (has links)
La pollution atmosphérique liée aux aérosols organiques secondaire (SOA) représente un des enjeux majeurs du XXIème siècle. La photochimie multiphasique des SOA constitue le coeur et l'originalité de cette thèse.Le réacteur photochimique permet de simuler en laboratoire, l'oxydation en phase aqueuse atmosphérique des composés organiques volatils biogéniques (BVOC), et notamment, la méthyl vinyl cétone (MVK), afin d'étudier la formation ces SOA.Nous étudions la réactivité de la MVK en présence de ●OH et sa capacité à oligomériser en fonction des concentrations initiales de MVK, d'oxygène, et de ●OH. Une large stratégie analytique basée sur la chromatographie liquide couplée à la spectrométrie de masse (MS) permet d'identifier des produits de réaction, et d'établir un mécanisme réactionnel, expliquant la formation des oligomères, leurs rendements et leur vieillissement.Les données colligées servent d'entrées à un modèle de boîte multiphasique, afin d'explorer la sensibilité de l'oligomérisation aux conditions atmosphériques.Ensuite, nous comparons la réactivité de la MVK en présence de ●OH à celle induite par la photolyse de l'acide pyruvique; puis nous mesurons la tension de surface engendrée par ces deux systèmes d'oligomères. Enfin, la mobilité ionique couplée à la MS permet d'observer la co-oligomérisation d'une gamme étendue de BVOC en présence de ●OH.L'oligomérisation atmosphérique implique (i) une concentration minimale de précurseurs pouvant être atteinte dans les aérosols humides via la co-oligomérisation; (ii) une réactivité en compétition avec l'oxygène dissous dans la phase aqueuse, et dont la pertinence atmosphérique reste à explorer. / Air pollution caused by secondary organic aerosol (SOA) is one of the major challenges of this century. We focus this thesis on SOA , through an innovative approach, i.e. multiphase photochemistry.The photochemical reactor allows to simulate in laboratory, the atmospheric aqueous phase oxidation of biogenic volatile organic compounds (BVOC) and in particular, methyl vinyl ketone (MVK), and thus, to study SOA.We study the reactivity of MVK in the presence of ●OH and its ability to oligomerize under various initial concentrations of oxygen, MVK and ●OH. A wide analytical strategy based on liquid chromatography-mass spectrometry is used to identify the reaction products, and establish a chemical mechanism. We focus on these oligomers systems, formation, yield and aging. Collected data are used as inputs to a multiphase box model to explore the sensitivity of oligomerization to the variations of physical and chemical atmospheric parameters. The photochemistry of pyruvic acid generates radical chemistry and initiates MVK oligomerization. We closely compare this reaction to MVK ●OH oxidation. Then, we measure the surface activity of both systems. The ability of oligomers to partition to the interface could affect the climate. Finally, we used ion mobility - mass spectrometry to observe ●OH co-oligomerization of a mixture of organic compounds most representative of the atmosphere.Atmospheric oligomerization implies (i) a minimal concentration of precursors that could be reached in wet aerosol via the co-oligomerization; (ii) a reactivity in competition with the addition of the dissolved oxygen, whose the atmospheric relevance remains to be explored.

Page generated in 0.1093 seconds