Spelling suggestions: "subject:"On then nun"" "subject:"On then bun""
121 |
Multi-flagellated bacteria : stochastic model for run-and-tumble chemotaxisRaharinirina, Nomenjanahary Alexia 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Bacterial chemotaxis, as observed for Escherichia coli, in a field of chemoattractant
molecules is characterised by a run-and-tumble motion. The motion
is effected by the clockwise (CW) or counter-clockwise (CCW) rotation
of flagella; filamentous appendages attached to molecular motors on the
cell body. Runs appear when all flagella turn in the CCW-direction and are
used to maintain a favourable direction. Tumbles emerge as soon as one
flagellum starts to turn CW and are used for reorientation. Because of the
variation observed between individual bacteria displaying run-and-tumble
motion, we choose to model this behaviour within a probabilistic framework.
An important feature of the chemotactic ability of E.coli is that the cell increases
run while moving in the right direction and shortens it in the opposite
case. This underlines that tumbles are used for reorientation. It has been
found from experiments that there can be significant variation in the tumble
fashion depending on the fraction of CW-rotating motors (Turner et al.,
2000). The change in angle produced when fewer flagella are rotating CW
was found to be smaller when compared to the case for many CW-rotating
flagella. In addition, the change of direction contributed by a small portion
of CW-rotating flagella is rarely significant for bacteria with many flagella.
Based on these observations, we have distinguished between models for the
one-flagellated and the multi-flagellated cases.
Furthermore, since the tumbling angle change increases with the fraction
of CW-rotating motors, it would not be impossible to have some cases where
the amount of turn produced by the CW-rotating motors induces the bacterium
to have a change of direction greater than 2π. But, this feature could not have been observed because when the bacterium tumbles it can effectuate
several revolutions before resuming to a new direction. Therefore, we
do not restrict our change of direction to (0,2π) to allow the bacteria to have
the possibility to effectuate change of directions of magnitude greater than
2π. To this end, we differentiate between the probability of having directional
change of magnitude α and α +2π . Thus we do not use angle change
distributions that are defined modulo 2π such as the von Mises distribution
or the wrapped normal distribution.
The chemotactic ability of the bacterium is modelled by representing the
CCW-bias of a single flagellum as a function of the chemoattractant concentration.
The model includes the temporal memory of chemoattractant
concentration that the bacterium has, which usually spans about 4s. The
information about the quality of the current direction of the bacterium is
transmitted to the flagellar motor by assuming that this one varies with the
chemoattractant concentration level. In addition, the saturation of the bias
is incorporated by assuming that the bacterium performs a temporal comparison
of the receptor occupancy. The present CCW-bias-Model accounts
for the chemotactic ability of the bacterium as well as its adaptation to uniform
chemoattractant environment.
The models of one-flagellated and multi-flagellated bacterial motion, are
used to investigate two main problems. The first one consists of determining
the optimal tumbling angle strategy of the bacteria. The second one
consists of looking at the effects of the tumble variation on the chemotactic
efficiency of the bacteria. In order to address these questions, the chemotactic
efficiency measure is defined in such a way that it reflects the ability of
the bacteria to converge and to stay in a near neighbourhood of the source
so that they gain more nutrients.
Since its movement is entirely governed by its single flagellum, the one
flagellated bacterium is more able to effectuate a run motion. Tumbling
events are modelled to be all equivalent because there is not any fraction of
flagella to consider.
On the other hand, the tumble variation of the multi-flagellated bacteria
is modelled by assuming that the directional change during a tumble is a
function of the fraction of CW-rotating motors. By assuming that the number
of CW-rotating flagella follows a binomial distribution, we suppose that
the multi-flagellated bacteria are less able to effectuate a run motion. This
also implies that the change of direction produced by fewer CW-rotating
flagella are more likely to happen, and this compensates the lack of run.
The models show that the optimal tumbling angle change for the bacteria
is less than 2π and that higher flagellated bacteria have higher chemotacitc
efficiency. As the number of flagella of the bacteria increases, there can be
more tumble variation, in this case the bacteria are more capable of adjusting
their direction. There could be some situation were the bacteria are not
moving to the right direction, but do not require a large change of direction. This ability to adjust their direction accordingly allows them to converge
nearer to the source and to gain more nutrients.
In addition, the dependence of the tumbling angle on the fraction of
CW-rotating flagella of the mutli-flagellated bacteria, implies that there is
a correlation between the tumbling angle deviation and the external environment,
because the rotational states CCW-CW of the flagella depends on
the external cue. Consequently, it would not be impossible that the average
magnitude of tumbling angle change depends on the external environment.
To investigate this possibility we analyse the distribution of the tumbling
tendency of a single bacterium over time, which is the distribution over
time of the average positive tumbling change of the bacterium, within zerogradient
environment and within non-zero-gradient environment. We defined
the average of these tumbling tendency over time as the directional
persistence.
We observe that the directional persistence within these different nonzero-
gradient environment remains the same. However, the difference between
the directional persistence within zero-gradient and non-zeros gradient
environment gets larger as the number of flagella of the cell increases.
There is more correlation between the external environment and the tumbling
tendency of the bacterium. Which is the reason why the higher flagellated
bacteria responds the best to the external environment by having the
higher chemotactic performance.
Finally, the total directional persistence generated by the optimal tumbling
angle change of the bacteria is the average directional persistence of
the bacteria regardless of their number of flagella. Its value, predicted by
the model is 1.54 rad within a non-zero-gradient environment and 1.63 rad
within a zero-gradient environment. / AFRIKAANSE OPSOMMING: Bakteriese chemotakse, soos waargeneem word vir Escherichia coli, in ’n
veld van chemiese lokmiddel molekules word gekenmerk deur ’n hardloopen-
tuimel beweging. Die beweging word bewerkstellig deur die regsom of
linksom rotasie van flagella; filamentagtige aanhangsels geheg aan molekulêre
motors op die selliggaam. ’n Hardloop aksie kom voor as al die
flagella linksom roteer en word gebruik om ’m voordelige koers te handhaaf.
Tuimels kom voor sodra een van die flagella regsom draai en word
gebruik vir heroriënteering. Van wee die variasie wat waargeneem word
tussen individuele bakterieë wat hardloop-en-tuimel bewegiging vertoon,
verkies ons ’n probabilistiese raamwerk om in te werk.
’n Belangrike eienskap van die chemotakse vermoë van E. coli is dat die
sel meer gereeld hardloop terwyl dit in die regte rigting beweeg en minder
gereeld in die teenoorgestelde geval. Dit beklemtoon dat tuimels gebruik
word vir heroriënteering. Dit is al eksperimenteel vasgestel dat daar
betekenisvolle variasie kan wees in die tuimel wyse, wat afhang van die
breukdeel regsom roterende motors (Turner et al., 2000). Die hoekverskil
afkomstig van minder regsom roterende flagella was vasgestel om kleiner
te wees in vergelyking met die menig regsom roterende geval. Verder word
die bydrae tot die hoekverskil van ’n klein breukdeel regsom roterende flagella
selde beduidend vir bakterieë met baie flagella. As gevolg van hierdie
waarnemings, tref ons onderskeid tussen modelle vir een-flagella en multiflagella
gevalle. Aangesien die tuimel hoeksverskil vergroot saam met die breukdeel regsom
roterende motore, is dit nie onmoontlik om gevalle te hê waar die hoeveelheid
draaiaksie gegenereer deur die regsom roterende motore ’n rigtingsverskil
groter as 2π kan bewerkstellig nie. Dit was nie moontlik om
hierdie eienskap waar te neem nie aangesien die bakterieë ’n paar keer kan
tuimel voordat ’n nuwe rigting vasgestel word. Vir hierdie rede beperk ons
nie die hoeksverskil tot (0,2π) nie om die bakterieë toe te laat om rigtings
veranderinge groter as 2π te ondergaan. Vir hierdie doel, onderskei ons tussen
die waarskynlikheid van ’n rigtinsverskil met grootte α en α + 2π. Dus,
gebruik ons nie hoekverskil verspreidings wat modulo 2 gedefinieer is nie,
soos die von Mises verspreiding of omwinde normaalverdeling.
Die chemotakse vermoë van die bakterium word gemodelleer deur die
linksom sydigheid van ’n enkele flagellum as ’n funksie van die chemotakse
lokmiddel konsentrasie voor te stel. Die model sluit in die tydelike
geheue wat die bakterium besit oor chemotakse lokmiddel konsentrasie,
wat gewoonlik oor 4s strek. Die informasie oor die kwaliteit van die huidige
rigting van die bakterium word deur gegee na die flagella motor toe
deur die aanname te maak dat dit wissel met die chemotakse lokmiddel
konsentrasie vlak. Die versadiging van die sydigheid word geinkorporeer
deur aan te neem dat die bakterium ’n temporale vergelyking maak tussen
reseptor okkupasie. Die huidige linksom sydige model neem die bakterium
chemotakse vermoë in ag, as ook aanpassing tot ’n uniforme chemotakse
lokmiddel omgewing.
Die modelle van een-flagella en multi-flagella bakteriële beweging word
gebruik om twee hoof probleme te bestudeer. Die eerste, bestaan daaruit om
vas te stel wat die optimale tuimel hoek strategie van die bakterieë is. Die
tweede kyk na die uitwerking van tuimel variasie op chemotakse effektiwiteit.
In orde om hierdie vra te adreseer word die chemotakse effektiwiteit
op so mannier gedefinieer dat dit die bakteriese vermoë om die buurt om
die oorsprong te nader en daar te bly.
Aangesien die beweging heeltemal vasgestel word deur een flagella, in
die een-flagella geval, is ’n bakterium meer in staat daartoe om ’n hardloop
aksie te bewerkstellig. Tuimel voorvalle word as ekwivalent gemodeleer
omdat daar geen breukdeel roterende flagella is om in ag te neem nie.
In teenstelling, word die tuimel variasie van multi-flagella bakterieë gemodeleer
deur die aanname te maak dat rigtingsverandering gedurende ’n
tuimel ’n funksie is van die breukdeel regsom roterende motore. Deur die
aanname te maak dat die getal regsom roterende flagella ’n binomiese verspreiding
volg, veronderstel ons dat multi-flagella bakterieë minder in staat
daartoe is om ’n hardloop aksie te onderneem. Hierdie impliseer ook dat
rigtingverandering wat geproduseer word deur minder regsom roterende
flagella meer geneig is om voor te kom en dan kompenseer vir ’n tekortkoming
aan hardloop gebeure.
Die modelle wys dat die optimale tuimelhoek verandering minder as 2 is en dat bakterieë met meer flagella meer chemotaksies effektief is. Soos
die getal flagella vermeder, kan daar meer tuimel variasie wees, en in die
geval is die bakterieë meer in staat om hul rigting te verander. Daar kan
omstandighede wees waar die bakterieë nie in die regtige rigting beweeg
nie, maar nie ’n groot rigtingsverskil nodig het nie. Hierdie vermoë om hul
rigting byvolglik te verander stel hul in staat om nader aan die oorsprong
te konvergeer en dus meer voedingstowwe op te neem.
Die afhanklikheid van die tuimel hoek op die breukdeel regsom roterende
flagella van multi-flagella bakterieë dui daarop dat daar ’n korrelasie
is tussen die tuimel hoek afwyking en die eksterne omgewing, omdat
die roterings toestand, regs- of linksom, van die flagella afhanklik is van
die eksterne sein. As ’n gevolg, is dit nie onmoontlik dat die gemiddelde
grootte van die tuimel hoek verandering van die eksterne omgewing afhang
nie. Om hierdie moontlikheid te bestudeer, analiseer ons die verspreiding
van die tuimel neiging van ’n enkele bakterium oor tyd, wat die verspreiding
oor tyd van die gemiddelde positiewe tuimel verandering is, in ’n nulgradient
en nie-nul-gradient omgewing. Ons het hierdie gemiddelde tuimel
neigings oor tyd gedefinieer as die rigtings volharding.
Ons het waargeneem dat die rigtings volharding binne verskillende nienul-
gradient omgewings dieselfde bly. Nogtans is die verskil tussen die rigtings
volharding binne nul-gradient en nie-nul-gradient omgewings groter
soos die getal flagella vermeder. Daar is meer korrelasie tussen die eksterne
omgewing en tuimel neiging van die bakterium. Dit is die rede hoekom
bakterieë met meer flagella die beste reageer op die eksterne omgewing
deur beter chemotakse effektiwiteit.
Ten slotte, die totale rigtings volharding gegenereer deur die optimale
tuimel hoek verandering is die gemiddelde rigtings volharding ongeag van
die getal flagella. Die waarde wat deur die model voorspel word is 1.54
rad binne ’n nie-nul-gradient omgewing en 1.63 rad binne ’n nul-gradient
omgewing.
|
122 |
Heat recovery units in ventilation : Investigation of the heat recovery system for LB20 and LB21 in Building 99, University of GävleDuarte, Marta January 2016 (has links)
Heating, ventilation and air-conditioning (HVAC) systems are widely distributed over the world due to their capacity to adjust some local climate parameters, like temperature, relative humidity, cleanliness and distribution of the air until the desired levels verified in a hypothetical ideal climate. A review of buildings’ energy usage in developed countries shows that in the present this energy service is responsible for a portion of about 20% of the final energy usage on them, increasing up to 50% in hot-humid countries. In order to decrease this value, more and more different heat recovery systems have been developed and implemented over the last decades. Nowadays it is mandatory to install one of these units when the design conditions are above the limit values to avoid such components, what is possible to verify mostly in non-residential buildings. Each one of those units has its own performance and working characteristics that turns it more indicated to make part of a certain ventilation system in particular. Air-to-air energy recovery ventilation is based on the heat recovery transfer (latent and/or sensible) from the flow at high temperature to the flow at lower temperature, pre-warming the outdoor supply air (in the case of the winter). Therefore, it is important to understand in which concept those units have to be used and more important than that, how they work, helping to visualize their final effect on the HVAC system. The major aims of this study were to investigate the actual performance of the heat recovery units for LB20 and LB21 in building 99 at the University of Gävle and make some suggestions that could enhance their actual efficiency. Furthermore, the energy transfer rates associated to the heat recovery units were calculated in order to understand the impact of such components in the overall HVAC system as also the possible financial opportunity by making small improvements in the same units. To assess the system, values of temperature and flow (among others) were collected in the air stream and in the ethylene-glycol solution that works as heat transfer medium between air streams and is enclosed in pipes that make part of the actual run-around heat recovery units. After some calculations, it was obtained that for the coldest day of measurements, the sensible effectiveness was 42% in LB20 and 47% in LB21, changing to 44% and 43% in the warmer day, respectively. The actual heat transfer representing the savings in the supply air stream is higher on the coldest day, with values of 46 kW in LB20 and 84 kW in LB21, justifying the existence of the heat recovery units even if those ones imply the use of hydraulic pumps to ensure the loop. The low values of efficiency have shown that both heat recovery units are working below the desired performance similarly to the pumps that make part of the same units. This fact, together with the degradation of the units that is possible to observe in the local, indicates that a complete cleaning (followed by a change of the heat transfer medium) of the heat recovery units and a new adjustment of pumps and valves for the further changes, are necessary. By doing this, it is expected to see the year average sensible effectiveness increase to close to 45% in both units which will lead to a potential economic saving of around 41 000 SEK per year.
|
123 |
Internal logistics : Optimizing the flow of goods with milk runsMillegård, Jessica, Kurzbach, Sven January 2016 (has links)
In today's world the challenge of logistics becomes more and more important for all companies, which consequently contributes to the need of an integrated system of in-house logistics. Goods must flow easily between stations and departments in order to achieve the best utilization of transportation as well as maintaining a good distribution structure to handle these processes in an efficient and effective way to enhance business performance and competitiveness. This report aims to provide research on how to strategically organize, plan and structure the flow of internal logistics within an organization. The research in this study originates from 3 main methods, a theoretical review, a case study and a benchmark. The main idea of the thesis was to contribute with scientific knowledge of improvements that can be achieved within internal logistics targeting companies operating within the service sector. In order to understand the scope of the problem the current state at the case Tropical Islands was analysed and served to identify areas where possible improvements could be achieved. Further on, in combination with the theory and empirical findings the main conclusions of the thesis was the need to strategically organize the flow of internal logistics to improve efficiency and enhance competitiveness. It was made evident that planning is essential in order to successfully implement the milk runs. Other tools could be utilized to further eliminate drawbacks that might occur.
|
124 |
An Investigation of Run-time Operations in a Heterogeneous Desktop Grid Environment: The Texas Tech University Desktop Grid Case StudyPerez, Jerry Felix 01 January 2013 (has links)
The goal of the dissertation study was to evaluate the existing DG scheduling algorithm. The evaluation was developed through previously explored simulated analyses of DGs performed by researchers in the field of DG scheduling optimization and to improve the current RT framework of the DG at TTU. The author analyzed the RT of an actual DG,
thereby enabling other investigators to compare theoretical results with the results of this dissertation case study.
Two statistical methods were used to formulate and validate predictive models: multiple linear regression and graphical exploratory data analysis techniques. Using both statistical methods, the author was able to determine that the theoretical model was able to predict the significance of four independent variables of resource fragmentation,
computational volatility, resource management, and grid job scheduling on the dependent variables quality of service and job performance affecting RT. After an experimental case study analysis of the DG variables, the author identified the best DG resources to perform
optimization of run-time performance of DG at TTU. The projected outcome of this investigation is the improved job scheduling techniques of the DG at TTU.
|
125 |
AN INVESTIGATION INTO LONG-RUN ABNORMAL RETURNS USING PROPENSITY SCORE MATCHINGAcharya, Sunayan 01 January 2012 (has links)
This is a study in two parts. In part-1, I identify several methods of estimating long-run abnormal returns prevalent in the finance literature and present an alternative using propensity score matching. I first demonstrate the concept with a simple simulation using generated data. I then employ historical returns from CRSP and randomly select events from the dataset using various alternating criteria. I test the efficacy of different methods in terms of type-I and type-II errors in detecting abnormal returns over 12- 36- and 60- month periods. I use various forms of propensity score matching: 1--5 Nearest Neighbors in Caliper using distance defined alternatively by Propensity Scores and the Mahalanobis Metric, and Caliper Matching. I show that overall, Propensity Score Matching with two nearest neighbors provides much better performance than traditional methods, especially when the occurence of events is dictated by the presence of certain firm characteristics.
In part-2, I demonstrate an application of Propensity Score Matching in the context of open-market share repurchase announcements. I show that traditional methods are ill-suited for the calculation of long-run abnormal returns following such events. Consequently, I am able to improve upon such methods on two fronts. First, I improve upon traditional matching methods by providing better matches on multiple dimensions and by being able to retain a larger sample of firms from the dataset. Second, I am able to eliminate much of the bias inherent in the Fama-French type methods for this particular application. I show this using simulations on samples based on firms that resemble a typical repurchasing firm. As a result, I obtain a statistically significant 1-, 3-, and 5- year abnormal return of about 2%, 5%, and 10% respectively, which is much lower than what prior literature has shown using traditional methods. Further investigation revealed that much of these returns are unique to small and unprofitable firms.
|
126 |
Longshore Sediment Transport on a Mixed Sand and Gravel LakeshoreDawe, Iain Nicholas January 2006 (has links)
This thesis examines the processes of longshore sediment transport in the swash zone of a mixed sand and gravel shoreline, Lake Coleridge, New Zealand. It focuses on the interactions between waves and currents in the swash zone and the resulting sediment transport. No previous study has attempted to concurrently measure wave and current data and longshore sediment transport rates on a mixed sand and gravel lakeshore beach in New Zealand. Many of these beaches, in both the oceanic and lacustrine environments, are in net long-term erosion. It is recognised that longshore sediment transport is a part of this process, but very little knowledge has existed regarding rates of sediment movement and the relationships between waves, currents and swash activity in the foreshore of these beach types. A field programme was designed to measure a comprehensive range of wind, wave, current and morphological variables concurrently with longshore transport. Four electronic instruments were used to measure both waves and currents simultaneously in the offshore, nearshore and swash zone. In the offshore area, an InterOcean S4ADW wave and current meter was installed to record wave height, period, direction and velocity. A WG-30 capacitance wave gauge measured the total water surface variation. A pair of Marsh-McBirney electromagnetic current meters, measuring current directions and velocities were installed in the nearshore and swash zone. Data were sampled for 18 minutes every hour with a Campbell Scientific CR23x data-logger. The wave gauge data was sampled at a rate of 10 Hz (0.1 s) and the two current meters at a rate of 2 Hz (0.5 s). Longshore sediment transport rates were investigated with the use of two traps placed in the nearshore and swash zone to collect sediment transported under wave and swash action. This occurred concurrently with the wave measurements and together yielded over 500 individual hours of high quality time series data. Important new insights were made into lake wave processes in New Zealand's alpine lakes. Measured wave heights averaged 0.20-0.35 m and ranged up to 0.85 m. Wave height was found to be strongly linked to the wind and grew rapidly to increasing wind strength in an exponential fashion. Wave period responded more slowly and required time and distance for the wave length to develop. Overall, there was a narrow band of wave periods with means ranging from 1.43 to 2.33 s. The wave spectrum was found to be more mixed and complicated than had previously been assumed for lake environments. Spectral band width parameters were large, with 95% of the values between 0.75 and 0.90. The wave regime attained the characteristics of a storm wave spectrum. The waves were characteristically steep and capable of obtaining far greater steepness than oceanic wind-waves. Values ranged from 0.010 to 0.074, with an average of 0.051. Waves were able to progress very close to shore without modification and broke in water less than 0.5 m deep. Wave refraction from deep to shallow water only caused wave angles to be altered in the order of 10%. The two main breaker types were spilling and plunging. However, rapid increases in beach slope near the shoreline often caused the waves to plunge immediately landward of the swash zone, leading to a greater proportion of plunging waves. Wave energy attenuation was found to be severe. Measured velocities were some 10 times less at two thirds the water depth beneath the wave. Mean orbital velocities were 0.30 m s⁻¹ in deep water and 0.15 m s⁻¹ in shallow water. The ratio difference between the measured deep water orbital velocities and the nearshore orbital velocities was just under one half (us/uo = 0.58), almost identical to the predicted phase velocity difference by Linear wave theory. In general Linear wave theory was found to provide good approximations of the wave conditions in a small lake environment. The swash zone is an important area of wave dissipation and it defines the limits of sediment transport. The width of the swash zone was found to be controlled by the wave height, which in turn determined the quantity of sediment transported through the swash zone. It ranged in width from 0.05 m to 6.0 m and widened landward in response to increased wave height and lakeward in response the wave length. Slope was found to be an important secondary control on swash zone width. In low energy conditions, swash zone slopes were typically steep. At the onset of wave activity the swash zone becomes scoured by swash activity and the beach slope grades down. An equation was developed, using the wave height and beach slope that provides close estimates of the swash zone width under a wide range of conditions. Run-up heights were calculated using the swash zone width and slope angle. Run-up elevations ranged from 0.01 m to 0.73 m and were strongly related to the wave height and the beach slope. On average, run-up exceeds the deep water wave height by a factor of 1.16H. The highest run-up elevations were found to occur at intermediate slope angles of between 6-8°. Above 8°, the run-up declined in response to beach porosity and lower wave energy conditions. A generalised run-up equation for lake environments has been developed, that takes into account the negative relationship between beach slope and run-up. Swash velocities averaged 0.30 m s⁻¹ but maximum velocities averaged 0.98 m s⁻¹. After wave breaking, swash velocities quickly reduced through dissipation by approximately one half. Swash velocity was strongly linked to wave height and beach slope. Maximum velocities occurred at beach slopes of 5°, where incident swash dominated. At slopes between 6° and 10°, swash velocities were hindered by turbulence, but the relative differences between the swash and backswash flows were negligible. At slope angles above 10° there was a slight asymmetry to the swash/backswash flow velocities due to beach porosity absorbing water at the limits of the swash zone. Three equations were developed for estimating the mean and maximum swash velocity flows. From an analysis of these interactions, a process-response model was developed that formalises the morphodynamic response of the swash zone to wave activity. Longshore sediment transport occurred exclusively in the swash zone, landward of the breaking wave in bedload. The sediments collected in transit were a heterogeneous mix of coarse sands and fine-large gravels. Hourly trapped rates ranged from 0.02 to 214.88 kg hr⁻¹. Numerical methods were developed to convert trapped mass rates in to volumetric rates that use the density and porosity of the sediment. A sediment transport flux curve was developed from measuring the distribution of longshore sediment transport across the swash zone. Using numerical integration, the area under this curve was calculated and an equation written to accurately estimate the total integrated transport rates in the swash zone. The total transport rates ranged from a minimum of 1.10 x 10-5 m³ hr⁻¹ to a maximum of 1.15 m³ hr⁻¹. The mean rate was 7.36 x 10⁻² m³ hr⁻¹. Sediment transport was found to be most strongly controlled by the wave height, period, wave steepness and mean swash velocity. Transport is initiated when waves break at an oblique angle to the shoreline. No relationships could be found between the grain size and transport rates. Instead, the critical threshold velocities of the sediment sizes were almost always exceed in the turbulent conditions under the breaking wave. The highest transport rates were associated with the lowest beach slopes. It was found that this was linked to swash high velocities and wave heights associated with foreshore scouring. An expression was developed to estimate the longshore sediment transport, termed the LEXSED formula, that divides the cube of the wave height and the wave length and multiplies this by the mean swash velocity and the wave approach angle. The expression performs well across a wide range of conditions and the estimates show very good correlations to the empirical data. LEXSED was used to calculate an accurate annual sediment transport budget for the fieldsite beaches. LEXSED was compared to 16 other longshore sediment transport formulas and performed best overall. The underlying principles of the model make its application to other mixed sand and gravel beaches promising.
|
127 |
Riparian Vegetation Distribution along the Ume River : Predicted responses of riparian plants to environmental flow modifications in run-of-river impoundmentsBerglund, Louise January 2014 (has links)
River environments are complex and dynamic ecosystems, and provide valuable ecosystem services such as clean water. The species rich riparian vegetation performs many important ecosystem functions such as reducing erosion and filter inputs from upland areas. Regulated flow regimes have decreased riparian plant species richness, cover and plant performance. To restore the integrity of riparian ecosystems, mitigation measures such as re-regulation of water-level regimes toward more natural seasonal fluctuations may be needed. The aim of this study was to assess potential responses of riparian plants to changes in water-level regulation in run-of-river impoundments to better match natural flow regimes. The elevational extent of plant species on riverbanks of two run-of-river impoundments in the Ume River were surveyed and their probability of occurrence along the gradient of inundation duration was modelled and compared to their distribution in the free-flowing Vindel River. Most species showed similar tolerance to flooding in the Ume and Vindel Rivers. Changes in elevational extent in response to three simulated environmental flow regimes were predicted by using the relationship between plant occurrence and inundation duration. A simulated spring flood and low water levels during the latter part of the growing season is predicted to result in the largest increase in elevational extent, with increases of 70-80% for several riparian species. However, only 47% of the riverbanks along run-of-river impoundments in the Ume River is deemed to be suitable for plant establishment, since many riverbanks are steep and devoid of fine-grained substrate as a result of erosion. / Älvmiljöer utgör komplexa och dynamiska ekosystem som tillhandahåller värdefulla ekosystemtjänster så som rent vatten. Den artrika strandvegetation bidrar till många viktiga ekosystemsfunktioner som närings- och giftupptag och till minskad erosion. Vattenregleringen med förändrade flödesregimer har minskat artrikedom, täckningsgrad och tillväxt av strandväxter. För restaurering av strandekosystemen kan omreglering till mer naturliga säsongsvariationer i vattenståndet vara nödvändigt. Den här studien syftade till att förutsäga hur utbredningen av strandväxter längs stränder i vattenkraftsmagasin potentiellt skulle förändras vid användande av miljöanpassade flöden för att mer likna naturliga flödesregimer i outbyggda älvar. Jag undersökte växternas utbredning i höjdled på stranden längs två magasin i Umeälven och beräknade sannolikheten för varje arts förekomst längs strandens översvämningsgradient. Av de arter som förekom i både Umeälven och den närliggande, outbyggda Vindelälven jämfördes växternas utbredningsgränser i respektive älv. De flesta arterna uppvisade liknande översvämningstolerans i Umeälven och Vindelälven. För att förutsäga förändringar i utbredning som respons på tre olika simulerade miljöanpassade vattenståndsregimer, jämfördes arternas översvämningstolerans vid nuvarade vattenstånd med simulerade vattenståndsregimer. En simulerad vårflod och lågt vattenstånd under sensommaren förväntas ge de största responserna i artutbredning med ökningar på 70-80% för ett flertal strandväxter. Endast 47% av älvstränderna i magasinen i Umeälven bedöms vara lämpliga för växtetablering eftersom stora delar av strandsträckorna är branta och saknar finkornigt substrat till följd av erosion.
|
128 |
Impact of acquisitions on short-run returns and leverage : two studies in corporate financeTao, Qizhi January 2009 (has links)
This dissertation consists of two empirical studies in corporate finance. The first study, The Impact of Acquisitions on the Short-Run Returns to Shareholders and Bondholders, investigates shareholder and bondholder wealth with respect to 310 acquisitions in the UK market between 1994 and 2006. It tests the 3-day and 41-day excess security returns with an event study. The results show positive returns for target shareholders and bondholders, and negative returns for acquirer shareholders and bondholders. Moreover, the tests on value-weighted combined security returns show that stockholders lose, bondholders gain, target firms gain, acquirer firms lose, and shareholders/bondholders of target and acquiring firms as a whole lose. These results support the co-insurance hypothesis, wealth transfer hypothesis, hubris hypothesis, and bond return based on hubris hypothesis, and reject the synergy hypothesis. The univariate and multivariate analyses on the deal characteristics find that target and acquirer stock returns are higher with cash payment, acquirer stock returns are higher in friendly and industry unrelated takeovers, acquirer bond returns are higher in industry related takeovers, target firm share returns are higher when target size is smaller than the acquirer size, target and acquirer stock returns are higher in bull market period, and acquirer bond returns are higher in the bear market period. The second study, A Test of the Partial Adjustment Theory of Leverage Using Leverage Changes Arising from Takeovers, investigates firms’ capital structures by the event of takeovers. It examines 659 US acquiring firms which involved in acquisitions between 1962 and 2001. These acquiring firms’ book leverage ratio deviations are tested in an 11-year window. This result shows that takeovers have significant impact on firms’ book leverage ratios in the announcement year. The trend that firms gradually reverse their actual leverage ratios towards their optimism in the five years after the takeovers supports the dynamic trade-off theory. The partial adjustment models on the speed of adjustment further support the dynamic trade-off theory and reject the alternative capital structure theories. The tests on method of payment and source of fund demonstrate that cash payment and raise of funds are likely to increase firms’ leverage ratios at announcement and to maintain these ratios at a high level in the years after the merger.
|
129 |
Analysis of SEC Budget’s Effect on Pre-Merger and Acquisition Announcement Price Run UpStastny, Connor 01 January 2017 (has links)
Prior to the announcement of a merger or acquisition, the stock price of the target company often experiences a price run-up prior to the announcement of the transaction. This price run-up can be attributed to information leakage and insider trading. This paper examines how changes in the SEC’s budget effects the pre-announcement price run-up of mergers and acquisitions. Furthermore, this paper explores the political processes surrounding SEC budgeting, as well as flaws in the current system. This paper finds that with a $10 million increase in the SEC’s budget, the average pre-announcement run-up ratio decreases by 0.3%. The findings of this paper suggest a concrete means of reducing insider trading, dependent on an increase in SEC budget.
|
130 |
A Top-Down Structured Programming Technique for Mini-ComputersWu, Chin-yi Robert 05 1900 (has links)
This paper reviews numerous theoretical results on control structures and demonstrates their practical examples. This study deals with the design of run-time support routines by using top-down structured programming technique. A number of examples are given as illustration of this method. In conclusion, structured programming has proved to be an important methodology for systematic program design and development.
|
Page generated in 0.1919 seconds