Spelling suggestions: "subject:"swabs zone"" "subject:"swain zone""
1 |
Swash zone dynamics of coarse-grained beaches during energetic wave conditionsAlmeida, Luis Pedro January 2015 (has links)
Coarse-grained beaches, such as pure gravel (PG), mixed sand-gravel (MSG) and composite (CSG) beaches, can be considered as one of the most resilient non-cohesive morpho-sedimentary coastal environments to energetic wave forcing (e.g., storms). The hydraulically-rough and permeable nature of gravel (D50 > 2 mm), together with the steep (reflective) beach face, provide efficient mechanisms of wave energy dissipation in the swash zone and provide a natural means of coastal defence. Despite their potential for shore protection very little is known about the response of these environments during high energetic wave conditions. Field measurements of sediment transport and hydrodynamics on coarse-grained beaches are difficult, because there are few instruments capable of taking direct measurements in an energetic swash zone in which large clasts are moving, and significant morphological changes occur within a short period of time. Remote sensing methods emerge in this context as the most appropriate solution for these types of field measurement. A new remote sensing method, based around a mid-range (~ 50 m) 2D laser-scanner was developed, which allows the collection of swash zone hydrodynamics (e.g., vertical and horizontal runup position, swash depth and velocity) and bed changes on wave-by-wave time scale. This instrument allowed the complete coverage of the swash zone on several coarse-grained beaches with a vertical accuracy of approximately 0.015 m and an average horizontal resolution of 0.07 m. The measurements performed with this new methodology are within the accuracy of traditional field techniques (e.g. video cameras, ultrasonic bed-level sensors or dGPS). Seven field experiments were performed between March 2012 and January 2014 on six different coarse-grained beaches (Loe Bar, Chesil, Slapton, Hayling Island, Westward Ho! and Seascale), with each deployment comprising the 2D laser-scanner together with complementary in-situ instrumentation (e.g., pressure transducer, ADV current meter). These datasets were used to explore the hydrodynamics and morphological response of the swash zone of these different environments under different energetic hydrodynamic regimes, ranging from positive, to zero, to negative freeboard regimes. With reference to the swash zone dynamics under storms with positive freeboard regimes (when runup was confined to the foreshore) it was found that extreme runup has an inverse relationship with the surf scaling parameter (=2Hs /gTptan2). The highest vertical runup excursions were found on the steepest beaches (PG beaches) and under long-period swell, while lower vertical runup excursions where linked to short-period waves and beaches with intermediate and dissipative surf zones, thus demonstrating that the contrasting degree of wave dissipation observed in the different types of surf zones is a key factor that control the extreme runup on coarse-grained beaches. Contrasting morphological responses were observed on the different coarse-grained beaches as a result of the distinct swash\surf zone hydrodynamics. PG beaches with narrow surf zone presented an asymmetric morphological response during the tide cycle (accretion during the rising and erosion during the falling tide) as a result of beach step adjustments to the prevailing hydrodynamics. On dissipative MSG and CSG beaches the morphological response was limited due to the very dissipative surf zone, while on an intermediate CSG beach significant erosion of the beach face and berm was observed during the entire tide cycle as a result of the absence of moderate surf zone wave dissipation and beach step dynamics. Fundamental processes related to the link between the beach step dynamics and the asymmetrical morphological response during the tidal cycle were for the first time measured under energetic wave conditions. During the rising tide the onshore shift of the breaking point triggers the onshore translation of the step and favors accretion (step deposit development), while during the falling tide the offshore translation of the wave breaking point triggers retreat of the step and favours backwash sediment transport (erosion of the step deposit). Under zero and negative freeboard storm regimes (when runup exceeds the crest of the barrier or foredune), field measurements complimented by numerical modelling (Xbeach-G) provide clear evidence that the presence of a bimodal wave spectrum enhances the vertical runup and can increase the likelihood of the occurrence of overtopping and overwash events over a gravel barrier. Most runup equations (e.g., Stockdon et al., 2006) used to predict the thresholds for storm impact regime (e.g., swash, overtopping and overwash) on barriers lack adequate characterisation of the full wave spectra; therefore, they may miss important aspects of the incident wave field, such as wave bimodality. XBeach-G allows a full characterization of the incident wave field and is capable of predicting the effect of wave spectra bimodality on the runup, thus demonstrating that is a more appropriate tool for predicting the storm impact regimes on gravel barriers. Regarding the definition of storm impact regimes on gravel barriers, it was found that wave period and wave spectra bimodality are key parameters that can affect significantly the definition of the thresholds for these different regimes. While short-period waves dissipate most of their energy before reaching the swash zone (due to breaking) and produce short runup excursions, long-period waves arrive at the swash zone with enhanced heights (due to shoaling) and break at the edge of the swash, thus promoting large runup excursions. When offshore wave spectrum presents a bimodal shape, the wave transformation on shallow waters favours the long period peak (even if the short-period peak is the most energetic offshore) and large runup excursions occur. XBeach-G simulations show that the morphological response of fine gravel barriers is distinct from coarse gravel barriers under similar overtopping conditions. While on coarser barriers overtopping regimes are expected to increase the crest elevation and narrow the barrier, on fine barriers sedimentation occurs on the back of the barrier and in the lower beach face. Such different sedimentation patterns are attributed to the different hydraulic conductivity of the different sediment sizes which control the amount of flow dissipation (due to infiltration) and, therefore, the capacity of the flow to transport sediment across and over the barrier crest. The present findings have significantly improved our conceptual understanding of the response of coarse-grained beaches during storms. A new field technique to measure swash dynamics in the field was developed during this thesis and has great potential to become widely used in a variety of coastal applications.
|
2 |
The generation of low-frequency water waves on beachesBarnes, Timothy January 1996 (has links)
No description available.
|
3 |
Longshore Sediment Transport on a Mixed Sand and Gravel LakeshoreDawe, Iain Nicholas January 2006 (has links)
This thesis examines the processes of longshore sediment transport in the swash zone of a mixed sand and gravel shoreline, Lake Coleridge, New Zealand. It focuses on the interactions between waves and currents in the swash zone and the resulting sediment transport. No previous study has attempted to concurrently measure wave and current data and longshore sediment transport rates on a mixed sand and gravel lakeshore beach in New Zealand. Many of these beaches, in both the oceanic and lacustrine environments, are in net long-term erosion. It is recognised that longshore sediment transport is a part of this process, but very little knowledge has existed regarding rates of sediment movement and the relationships between waves, currents and swash activity in the foreshore of these beach types. A field programme was designed to measure a comprehensive range of wind, wave, current and morphological variables concurrently with longshore transport. Four electronic instruments were used to measure both waves and currents simultaneously in the offshore, nearshore and swash zone. In the offshore area, an InterOcean S4ADW wave and current meter was installed to record wave height, period, direction and velocity. A WG-30 capacitance wave gauge measured the total water surface variation. A pair of Marsh-McBirney electromagnetic current meters, measuring current directions and velocities were installed in the nearshore and swash zone. Data were sampled for 18 minutes every hour with a Campbell Scientific CR23x data-logger. The wave gauge data was sampled at a rate of 10 Hz (0.1 s) and the two current meters at a rate of 2 Hz (0.5 s). Longshore sediment transport rates were investigated with the use of two traps placed in the nearshore and swash zone to collect sediment transported under wave and swash action. This occurred concurrently with the wave measurements and together yielded over 500 individual hours of high quality time series data. Important new insights were made into lake wave processes in New Zealand's alpine lakes. Measured wave heights averaged 0.20-0.35 m and ranged up to 0.85 m. Wave height was found to be strongly linked to the wind and grew rapidly to increasing wind strength in an exponential fashion. Wave period responded more slowly and required time and distance for the wave length to develop. Overall, there was a narrow band of wave periods with means ranging from 1.43 to 2.33 s. The wave spectrum was found to be more mixed and complicated than had previously been assumed for lake environments. Spectral band width parameters were large, with 95% of the values between 0.75 and 0.90. The wave regime attained the characteristics of a storm wave spectrum. The waves were characteristically steep and capable of obtaining far greater steepness than oceanic wind-waves. Values ranged from 0.010 to 0.074, with an average of 0.051. Waves were able to progress very close to shore without modification and broke in water less than 0.5 m deep. Wave refraction from deep to shallow water only caused wave angles to be altered in the order of 10%. The two main breaker types were spilling and plunging. However, rapid increases in beach slope near the shoreline often caused the waves to plunge immediately landward of the swash zone, leading to a greater proportion of plunging waves. Wave energy attenuation was found to be severe. Measured velocities were some 10 times less at two thirds the water depth beneath the wave. Mean orbital velocities were 0.30 m s⁻¹ in deep water and 0.15 m s⁻¹ in shallow water. The ratio difference between the measured deep water orbital velocities and the nearshore orbital velocities was just under one half (us/uo = 0.58), almost identical to the predicted phase velocity difference by Linear wave theory. In general Linear wave theory was found to provide good approximations of the wave conditions in a small lake environment. The swash zone is an important area of wave dissipation and it defines the limits of sediment transport. The width of the swash zone was found to be controlled by the wave height, which in turn determined the quantity of sediment transported through the swash zone. It ranged in width from 0.05 m to 6.0 m and widened landward in response to increased wave height and lakeward in response the wave length. Slope was found to be an important secondary control on swash zone width. In low energy conditions, swash zone slopes were typically steep. At the onset of wave activity the swash zone becomes scoured by swash activity and the beach slope grades down. An equation was developed, using the wave height and beach slope that provides close estimates of the swash zone width under a wide range of conditions. Run-up heights were calculated using the swash zone width and slope angle. Run-up elevations ranged from 0.01 m to 0.73 m and were strongly related to the wave height and the beach slope. On average, run-up exceeds the deep water wave height by a factor of 1.16H. The highest run-up elevations were found to occur at intermediate slope angles of between 6-8°. Above 8°, the run-up declined in response to beach porosity and lower wave energy conditions. A generalised run-up equation for lake environments has been developed, that takes into account the negative relationship between beach slope and run-up. Swash velocities averaged 0.30 m s⁻¹ but maximum velocities averaged 0.98 m s⁻¹. After wave breaking, swash velocities quickly reduced through dissipation by approximately one half. Swash velocity was strongly linked to wave height and beach slope. Maximum velocities occurred at beach slopes of 5°, where incident swash dominated. At slopes between 6° and 10°, swash velocities were hindered by turbulence, but the relative differences between the swash and backswash flows were negligible. At slope angles above 10° there was a slight asymmetry to the swash/backswash flow velocities due to beach porosity absorbing water at the limits of the swash zone. Three equations were developed for estimating the mean and maximum swash velocity flows. From an analysis of these interactions, a process-response model was developed that formalises the morphodynamic response of the swash zone to wave activity. Longshore sediment transport occurred exclusively in the swash zone, landward of the breaking wave in bedload. The sediments collected in transit were a heterogeneous mix of coarse sands and fine-large gravels. Hourly trapped rates ranged from 0.02 to 214.88 kg hr⁻¹. Numerical methods were developed to convert trapped mass rates in to volumetric rates that use the density and porosity of the sediment. A sediment transport flux curve was developed from measuring the distribution of longshore sediment transport across the swash zone. Using numerical integration, the area under this curve was calculated and an equation written to accurately estimate the total integrated transport rates in the swash zone. The total transport rates ranged from a minimum of 1.10 x 10-5 m³ hr⁻¹ to a maximum of 1.15 m³ hr⁻¹. The mean rate was 7.36 x 10⁻² m³ hr⁻¹. Sediment transport was found to be most strongly controlled by the wave height, period, wave steepness and mean swash velocity. Transport is initiated when waves break at an oblique angle to the shoreline. No relationships could be found between the grain size and transport rates. Instead, the critical threshold velocities of the sediment sizes were almost always exceed in the turbulent conditions under the breaking wave. The highest transport rates were associated with the lowest beach slopes. It was found that this was linked to swash high velocities and wave heights associated with foreshore scouring. An expression was developed to estimate the longshore sediment transport, termed the LEXSED formula, that divides the cube of the wave height and the wave length and multiplies this by the mean swash velocity and the wave approach angle. The expression performs well across a wide range of conditions and the estimates show very good correlations to the empirical data. LEXSED was used to calculate an accurate annual sediment transport budget for the fieldsite beaches. LEXSED was compared to 16 other longshore sediment transport formulas and performed best overall. The underlying principles of the model make its application to other mixed sand and gravel beaches promising.
|
4 |
Modification of Trophic Links between an Omnivore and Macroinfaunal Prey from Sandy Beaches of differing Physical RegimesMorrow, Kristina Joan 01 January 2012 (has links)
Sandy beach ecosystems have been studied worldwide; however, ecological data are sparse for the extensive barrier islands of Florida. Accordingly, I investigated the feeding patterns of the ghost crab (Ocypode quadrata), a dominant omnivore inhabiting beaches along the Floridian coast. Density data was collected for ghost crabs and swash macroinfaunal prey. In addition, I utilized stable isotopes in conjunction with the mixing models IsoSource and SIAR to characterize diets of ghost crabs across three barrier islands in spring and summer 2011. Results showed that ghost crabs at Cayo Costa feed primarily on swash macroinfauna, while those from Anclote Key shifted their diet to one comprised primarily of semi-terrestrial amphipods. However, at Honeymoon Island, ghost crab isotopic signatures were best explained by a mixed diet of both macroinfauna and wrack-associated prey. The unique consumption of wrack fauna at Anclote Key co-occurs with comparatively low infaunal densities and biomass, and modified ghost crab behavior due to trait-mediated effects. My results are novel because they suggest that wrack-associated fauna may be an important food source for ghost crabs in certain beach regimes.
|
5 |
Measurement and Modelling of Swash Zone Bed Shear StressMatthew BARNES Unknown Date (has links)
The development and testing of a shear cell for the purpose of measuring swash zone bed shear stress is presented. Direct measurements of bed shear stress were subsequently obtained using the shear plate in small, medium, and large-scale laboratory facilities. Measurements from both dam- break and bore-driven swash experiments are considered, covering a wide range of hydrodynamics and bed roughness. The dam-break problem is of interest here due to the theoretical analogy with the run-up of a solitary bore on a beach. Estimates of the flow velocities through the full swash cycle were obtained through numerical modelling and verified against measured velocity data. In conjunction, these data are used to calculate skin friction coefficients. The measurements indicate strong temporal and spatial variation in bed shear stress throughout the swash cycle, and a clear distinction between the uprush and backwash phase. For a single swash event, the maximum uprush bed shear stresses occur in the lower swash zone, within the range 0<x/Rx<0.3. The maximum backwash bed shear stresses also occur in the lower swash zone, and extend seaward of the initial bore collapse location. For a given cross-shore location the peak uprush bed shear stress is typically greater than the peak backwash bed shear stress by at least a factor two and up to a factor four. Local skin friction coefficients also indicate strong temporal and spatial variation. Furthermore, the behaviour of the local skin friction coefficient (back calculated from the measured bed shear stress using predicted, depth-averaged, flow velocities) over the swash cycle is inconsistent with the classical behaviour that is expected on the basis of the low Reynolds number flow. Smooth bed dam break and swash uprush friction coefficients appear to follow the general behaviour observed for smooth, turbulent open channel flow for an increasing Reynolds number. However, for a decreasing Reynolds number the behaviour of Cf differs from the steady flow relation. This is attributed the unsteady swash flow regime and flow history effects. It is expected that differences in flow history between the uprush and backwash have implications in terms of swash boundary layer growth and the resulting bed shear stress. A Lagrangian model for the swash boundary layer development is presented to consider these flow history effects. The model is based on the momentum integral approach for steady, turbulent, flat-plate boundary layers, with appropriate modifications to account for the unsteady flow regime. Fluid particle trajectories and velocity are computed and the boundary layer growth across the entire swash zone is estimated. Predictions of the bed shear stress agree well with the direct bed shear stress measurements and show a bias toward uprush sediment transport which has consistently been observed in measurements.
|
6 |
INFLUENCE OF LONG WAVES AND WAVE GROUPS ON SWASH ZONE SEDIMENT TRANSPORT AND CROSS-SHORE BEACH PROFILE EVOLUTIONSon Kim Pham Unknown Date (has links)
There are only a few detailed measurements of the cross-shore variation in the net sediment transport and beach evolution for single or multiple swash events, and no data showing the influence of long waves and wave groups on swash zone morphology. Novel laboratory experiments and numerical modeling have been performed to study the influence of long waves and bichromatic wave groups on sediment transport and beach morphodynamics in the swash zone. Due to complex processes, difficulties in measuring, and very significant difficulties in isolating the morphodynamic processes induced by long waves and wave groups on natural beaches, a laboratory study was designed to measure in very high detail the bathymetric evolution of model sand beaches under monochromatic waves, long wave and short wave composites (free long waves), and bichromatic wave groups (forced long waves). Net sediment transport, Q(x), and beach morphology changes under the monochromatic waves were analyzed and compared to conditions with and without the free long waves, and then compared with the bichromatic wave groups. A range of wave conditions, e.g., high energy, moderate energy, and low energy waves, were used to obtain beach evolution ranging from accretionary to erosive, and including intermediate beach states. Hydrodynamics parameters, e.g., instantaneous water depths, wave amplitudes, run-up and rundown, were also measured to study and test a sediment transport model for the swash zone, based on modifying the energetic-bedload based sediment transport equations with suspended sediment. The experimental data clearly demonstrate that for the monochromatic wave conditions, beach evolution develops erosion for high steepness waves and accretion for lower steepness waves. The model beach profile evolutions are similar to natural beaches, and form and develop bars and berms over time. Adding a free long wave to the short wave in the composite wave results in changes to the overall trend of erosion/accretion of the beach profile, but the net transport pattern does not change significantly. The short wave strongly dominates beach behavior and the net transport rate, instead of the free long wave in the composite wave. The free long wave, however, carries more water and sediment onshore, leading to an increase in shoreline motion and wave run-up further landward. The long wave influences the structure and position of the swash bar/berm, which generally tends to move onshore and forms a larger swash bar/berm for higher long wave amplitudes. The free long wave also increases overall onshore sediment transport, and reduces offshore transport for erosive conditions. The long wave tends to protect the beach face and enhances onshore transport for accretive conditions, especially in the swash zone. In contrast, for bichromatic wave groups having the same mean energy flux as their corresponding monochromatic wave, the influence on sediment transports is generally offshore in both the surf and swash zone instead of onshore. The swash berm is, however, formed further landward compared with the berm of the corresponding monochromatic wave. The sediment transport patterns (erosion or accretion) generated by the bichromatic wave group or corresponding monochromatic wave are similar, but differ in magnitude. The numerical model, starting in the inner surf zone to reduce the effect of poor breaker description in the non-linear shallow water equations, can produce a good match between observed data and the modeled hydrodynamics parameters in the SZ. The sediment transport model shows the important role of suspended sediment in the swash zone. In contrast with the observed data, energetic-based bed-load models predict offshore sediment transport for most wave conditions because of negative skewness. The modified sediment transport model, with added suspended sediment terms and optimized coefficients, produces a good match between model results and observed data for each wave condition, especially for low frequency monochromatic waves. The optimized coefficient set corresponding to particular monochromatic wave conditions can be used to predict the net sediment transport quite well for some composite wave conditions. Overall, the same optimized coefficient sets can be applied to predict the correct overall trend of net transport for most composite wave conditions. However, the predicted net transport for the bichromatic wave groups does not match well with the overall net transport patterns. There is no set of single transport coefficients that can be used to predict sediment transport for all wave conditions. This suggests that the present sediment transport models cannot predict evolution correctly, even for conditions which represent only perturbation from those for which they were calibrated.
|
7 |
INFLUENCE OF LONG WAVES AND WAVE GROUPS ON SWASH ZONE SEDIMENT TRANSPORT AND CROSS-SHORE BEACH PROFILE EVOLUTIONSon Kim Pham Unknown Date (has links)
There are only a few detailed measurements of the cross-shore variation in the net sediment transport and beach evolution for single or multiple swash events, and no data showing the influence of long waves and wave groups on swash zone morphology. Novel laboratory experiments and numerical modeling have been performed to study the influence of long waves and bichromatic wave groups on sediment transport and beach morphodynamics in the swash zone. Due to complex processes, difficulties in measuring, and very significant difficulties in isolating the morphodynamic processes induced by long waves and wave groups on natural beaches, a laboratory study was designed to measure in very high detail the bathymetric evolution of model sand beaches under monochromatic waves, long wave and short wave composites (free long waves), and bichromatic wave groups (forced long waves). Net sediment transport, Q(x), and beach morphology changes under the monochromatic waves were analyzed and compared to conditions with and without the free long waves, and then compared with the bichromatic wave groups. A range of wave conditions, e.g., high energy, moderate energy, and low energy waves, were used to obtain beach evolution ranging from accretionary to erosive, and including intermediate beach states. Hydrodynamics parameters, e.g., instantaneous water depths, wave amplitudes, run-up and rundown, were also measured to study and test a sediment transport model for the swash zone, based on modifying the energetic-bedload based sediment transport equations with suspended sediment. The experimental data clearly demonstrate that for the monochromatic wave conditions, beach evolution develops erosion for high steepness waves and accretion for lower steepness waves. The model beach profile evolutions are similar to natural beaches, and form and develop bars and berms over time. Adding a free long wave to the short wave in the composite wave results in changes to the overall trend of erosion/accretion of the beach profile, but the net transport pattern does not change significantly. The short wave strongly dominates beach behavior and the net transport rate, instead of the free long wave in the composite wave. The free long wave, however, carries more water and sediment onshore, leading to an increase in shoreline motion and wave run-up further landward. The long wave influences the structure and position of the swash bar/berm, which generally tends to move onshore and forms a larger swash bar/berm for higher long wave amplitudes. The free long wave also increases overall onshore sediment transport, and reduces offshore transport for erosive conditions. The long wave tends to protect the beach face and enhances onshore transport for accretive conditions, especially in the swash zone. In contrast, for bichromatic wave groups having the same mean energy flux as their corresponding monochromatic wave, the influence on sediment transports is generally offshore in both the surf and swash zone instead of onshore. The swash berm is, however, formed further landward compared with the berm of the corresponding monochromatic wave. The sediment transport patterns (erosion or accretion) generated by the bichromatic wave group or corresponding monochromatic wave are similar, but differ in magnitude. The numerical model, starting in the inner surf zone to reduce the effect of poor breaker description in the non-linear shallow water equations, can produce a good match between observed data and the modeled hydrodynamics parameters in the SZ. The sediment transport model shows the important role of suspended sediment in the swash zone. In contrast with the observed data, energetic-based bed-load models predict offshore sediment transport for most wave conditions because of negative skewness. The modified sediment transport model, with added suspended sediment terms and optimized coefficients, produces a good match between model results and observed data for each wave condition, especially for low frequency monochromatic waves. The optimized coefficient set corresponding to particular monochromatic wave conditions can be used to predict the net sediment transport quite well for some composite wave conditions. Overall, the same optimized coefficient sets can be applied to predict the correct overall trend of net transport for most composite wave conditions. However, the predicted net transport for the bichromatic wave groups does not match well with the overall net transport patterns. There is no set of single transport coefficients that can be used to predict sediment transport for all wave conditions. This suggests that the present sediment transport models cannot predict evolution correctly, even for conditions which represent only perturbation from those for which they were calibrated.
|
8 |
Longshore Sediment Transport on a Mixed Sand and Gravel LakeshoreDawe, Iain Nicholas January 2006 (has links)
This thesis examines the processes of longshore sediment transport in the swash zone of a mixed sand and gravel shoreline, Lake Coleridge, New Zealand. It focuses on the interactions between waves and currents in the swash zone and the resulting sediment transport. No previous study has attempted to concurrently measure wave and current data and longshore sediment transport rates on a mixed sand and gravel lakeshore beach in New Zealand. Many of these beaches, in both the oceanic and lacustrine environments, are in net long-term erosion. It is recognised that longshore sediment transport is a part of this process, but very little knowledge has existed regarding rates of sediment movement and the relationships between waves, currents and swash activity in the foreshore of these beach types. A field programme was designed to measure a comprehensive range of wind, wave, current and morphological variables concurrently with longshore transport. Four electronic instruments were used to measure both waves and currents simultaneously in the offshore, nearshore and swash zone. In the offshore area, an InterOcean S4ADW wave and current meter was installed to record wave height, period, direction and velocity. A WG-30 capacitance wave gauge measured the total water surface variation. A pair of Marsh-McBirney electromagnetic current meters, measuring current directions and velocities were installed in the nearshore and swash zone. Data were sampled for 18 minutes every hour with a Campbell Scientific CR23x data-logger. The wave gauge data was sampled at a rate of 10 Hz (0.1 s) and the two current meters at a rate of 2 Hz (0.5 s). Longshore sediment transport rates were investigated with the use of two traps placed in the nearshore and swash zone to collect sediment transported under wave and swash action. This occurred concurrently with the wave measurements and together yielded over 500 individual hours of high quality time series data. Important new insights were made into lake wave processes in New Zealand's alpine lakes. Measured wave heights averaged 0.20-0.35 m and ranged up to 0.85 m. Wave height was found to be strongly linked to the wind and grew rapidly to increasing wind strength in an exponential fashion. Wave period responded more slowly and required time and distance for the wave length to develop. Overall, there was a narrow band of wave periods with means ranging from 1.43 to 2.33 s. The wave spectrum was found to be more mixed and complicated than had previously been assumed for lake environments. Spectral band width parameters were large, with 95% of the values between 0.75 and 0.90. The wave regime attained the characteristics of a storm wave spectrum. The waves were characteristically steep and capable of obtaining far greater steepness than oceanic wind-waves. Values ranged from 0.010 to 0.074, with an average of 0.051. Waves were able to progress very close to shore without modification and broke in water less than 0.5 m deep. Wave refraction from deep to shallow water only caused wave angles to be altered in the order of 10%. The two main breaker types were spilling and plunging. However, rapid increases in beach slope near the shoreline often caused the waves to plunge immediately landward of the swash zone, leading to a greater proportion of plunging waves. Wave energy attenuation was found to be severe. Measured velocities were some 10 times less at two thirds the water depth beneath the wave. Mean orbital velocities were 0.30 m s⁻¹ in deep water and 0.15 m s⁻¹ in shallow water. The ratio difference between the measured deep water orbital velocities and the nearshore orbital velocities was just under one half (us/uo = 0.58), almost identical to the predicted phase velocity difference by Linear wave theory. In general Linear wave theory was found to provide good approximations of the wave conditions in a small lake environment. The swash zone is an important area of wave dissipation and it defines the limits of sediment transport. The width of the swash zone was found to be controlled by the wave height, which in turn determined the quantity of sediment transported through the swash zone. It ranged in width from 0.05 m to 6.0 m and widened landward in response to increased wave height and lakeward in response the wave length. Slope was found to be an important secondary control on swash zone width. In low energy conditions, swash zone slopes were typically steep. At the onset of wave activity the swash zone becomes scoured by swash activity and the beach slope grades down. An equation was developed, using the wave height and beach slope that provides close estimates of the swash zone width under a wide range of conditions. Run-up heights were calculated using the swash zone width and slope angle. Run-up elevations ranged from 0.01 m to 0.73 m and were strongly related to the wave height and the beach slope. On average, run-up exceeds the deep water wave height by a factor of 1.16H. The highest run-up elevations were found to occur at intermediate slope angles of between 6-8°. Above 8°, the run-up declined in response to beach porosity and lower wave energy conditions. A generalised run-up equation for lake environments has been developed, that takes into account the negative relationship between beach slope and run-up. Swash velocities averaged 0.30 m s⁻¹ but maximum velocities averaged 0.98 m s⁻¹. After wave breaking, swash velocities quickly reduced through dissipation by approximately one half. Swash velocity was strongly linked to wave height and beach slope. Maximum velocities occurred at beach slopes of 5°, where incident swash dominated. At slopes between 6° and 10°, swash velocities were hindered by turbulence, but the relative differences between the swash and backswash flows were negligible. At slope angles above 10° there was a slight asymmetry to the swash/backswash flow velocities due to beach porosity absorbing water at the limits of the swash zone. Three equations were developed for estimating the mean and maximum swash velocity flows. From an analysis of these interactions, a process-response model was developed that formalises the morphodynamic response of the swash zone to wave activity. Longshore sediment transport occurred exclusively in the swash zone, landward of the breaking wave in bedload. The sediments collected in transit were a heterogeneous mix of coarse sands and fine-large gravels. Hourly trapped rates ranged from 0.02 to 214.88 kg hr⁻¹. Numerical methods were developed to convert trapped mass rates in to volumetric rates that use the density and porosity of the sediment. A sediment transport flux curve was developed from measuring the distribution of longshore sediment transport across the swash zone. Using numerical integration, the area under this curve was calculated and an equation written to accurately estimate the total integrated transport rates in the swash zone. The total transport rates ranged from a minimum of 1.10 x 10-5 m³ hr⁻¹ to a maximum of 1.15 m³ hr⁻¹. The mean rate was 7.36 x 10⁻² m³ hr⁻¹. Sediment transport was found to be most strongly controlled by the wave height, period, wave steepness and mean swash velocity. Transport is initiated when waves break at an oblique angle to the shoreline. No relationships could be found between the grain size and transport rates. Instead, the critical threshold velocities of the sediment sizes were almost always exceed in the turbulent conditions under the breaking wave. The highest transport rates were associated with the lowest beach slopes. It was found that this was linked to swash high velocities and wave heights associated with foreshore scouring. An expression was developed to estimate the longshore sediment transport, termed the LEXSED formula, that divides the cube of the wave height and the wave length and multiplies this by the mean swash velocity and the wave approach angle. The expression performs well across a wide range of conditions and the estimates show very good correlations to the empirical data. LEXSED was used to calculate an accurate annual sediment transport budget for the fieldsite beaches. LEXSED was compared to 16 other longshore sediment transport formulas and performed best overall. The underlying principles of the model make its application to other mixed sand and gravel beaches promising.
|
9 |
Etude expérimentale de l'interaction entre deux vagues successives dans la zone littorale proche / Experimental study of the interaction between two waves in the nearshore areaBarale, Jose 30 April 2019 (has links)
Ce travail porte sur l’étude des processus hydrodynamiques consécutifs à l’interaction entre deux ressauts hydrauliques propagatifs, particulièrement lorsqu’elle intervient sur une plage faiblement inclinée, ou à proximité. L’étude est menée dans un dispositif expérimental original constitué d’un canal de faible longueur, fermé à ses extrémités, et par deux vannes séparant le canal en trois parties de longueurs variables, remplies à des niveaux différents, qui définissent deux réservoirs et une "zone de large". A l’autre extrémité du canal est disposé un plan incliné, imperméable, qui modélise la plage. Les ouvertures des vannes, rapides et décalées d’un intervalle de temps contrôlé (rupture de barrage), génèrent deux vagues successives qui interagissent avant ou sur la plage, ou après que l’une d’entre-elles se soit préalablement réfléchie dessus. Un dispositif de métrologie optique – "ombroscopie" – permet la mesure à haute fréquence de la position de l’interface libre au cours du temps. Lors de la caractérisation du dispositif expérimental, nous avons mis en évidence que la célérité du front consécutif à une rupture de barrage suit un modèle théorique basé sur une méthode des caractéristiques pour les équations de Saint-Venant, obtenues dans l’approximation d’eau peu profonde ("shallow water"), et proposé par Stoker (1957), malgré quelques effets qui perturbent cette dynamique comme la taille finie des réservoirs par exemple. Nous observons en particulier que cette célérité dépend principalement de la nonlinéarité et faiblement de la dispersion, en accord avec l’approximation d’eau peu profonde. Lors de la génération de deux ressauts hydrauliques successifs, nous proposons deux modélisations simples pour décrire la dynamique initiale du déplacement du deuxième front, avant qu’il n’interagisse avec le premier. Ces modèles simples encadrent la solution réelle, mais se heurtent également aux effets de taille finie des réservoirs. Les interactions des deux ressauts "similaires" sur la plage, ou à proximité, et la dynamique de la lame d’eau sur la plage, sont analysées en fonction du décalage temporel, et de l’angle de pente de la plage, en considérant la nature "fusion" ou "collision" de l’interaction. Pour un angle de plage donné, le "run-up "maximum est obtenu, dans notre étude, pour un déphasage entre les fronts qui entraîne une interaction de "fusion" au début de la plage. L’angle de plage optimum, dans ce cadre, semble correspondre à un type de plage intermédiaire entre une plage très réflective et uneplage dissipative / This study investigates the hydrodynamic processes resulting fromthe interaction between two bores, particularly when these happen on a beach with a gradual slope or nearby. The research was conducted with a new experimental device. The latter was designed with a short channel, closed at both ends, with two gates separating the channel in three parts of varying lengths and filled to different levels, defining respectively two reservoirs and a “nearshore zone”. At the other end of the channel lies an inclined, impermeable plane, which represents the beach. The rapid openings of the gates, with a controlled lag time, generate two successive waves that interact either before or on the beach, or after one of them swashes on the beach. A classical shadowgraphy method enables high frequency measurement of the free interface position over time. During the characterisation of the experimental device, we demonstrated that the velocity of the front originating from the dam break follows a theoretical model based on the characteristics evolution of the hyperbolic Saint-Venant equations obtained in the shallow water approximation, and proposed by Stoker (1957) fairly well. This occurs despite some effects that disrupt this dynamic, as for instance the finite size of the thanks. In particular, we observe that the front velocity depends mostly on non-linearity and not on dispersive effects, accordingly to shallow water approximation. During the generation of two successive bores, we propose two simple modelizations to describe the initial dynamics of the displacement of the second front, before it interacts with the first one. These simple models frame the actual solution, but also collide with the finite size effects of the reservoirs. The interactions of the two "similar" bores on the beach, or nearby, and the dynamics of the water lens swashing on the beach are analysed according to the time shift, and the angle of slope, considering the nature "fusion" or "collision" of the interaction. For a given beach angle, our study obtained the maximum run-up with a time shift that generates a merging of the fronts at the beginning of the shore. It appears that the optimum angle in this settingmatches that of a type of intermediate beach between a very reflective and a dissipativebeach
|
10 |
Morphodynamique de la zone de "swash" : étude en canal à houle par une méthode de stéréoscopie optique / Swash zone morphodynamics : wave flume investigation by an optical stereoscopic methodAstier, Jessica 28 April 2014 (has links)
Ce travail porte sur l’étude de l’évolution morphologique dans la zone de swash à haute résolution spatiale et temporelle afin de pouvoir analyser l’influence de la houle. Cette étude s’appuie sur deux campagnes de mesures menées dans le grand canal à houle CIEM (Barcelone), l’une avec application d’un forçage aléatoire érosif de type JONSWAP et l’autre avec application d’une série de forçages bichromatiques. L’originalité de l’étude proposée ici consiste en l’analyse, par une méthode de stéréoscopie optique, de l’évolution du fond avec une excellente précision tout en quantifiant précisément l’évolution des fronts d’eau sur une surface continue, la majorité des techniques de mesure ne donnant en général accès qu’à des relevés ponctuels dans cette zone. La position du lit de sable est estimée avec une précision de quelques centaines de μm. Sur des temps longs, le forçage JONSWAP érosif engendre un recul global et quasi-homogène dans la zone de swash. Cependant, cette évolution ne semble pas influencer la réponse hydrodynamique qui reste similaire dans la zone de swash lorsque l’on répète la série. Ceci a été confirmé dans le cas des forçages bichromatiques, répétés sur des fonds différents. Au sein d’une série d’un forçage aléatoire, différentes échelles de temps sont observées : l’échelle gravitaire (période caractéristique du signal) et les ondes infragravitaires (large gamme d’événements plus longs). Cette coexistence de plusieurs échelles de temps a pu être associée à la forte variabilité du profil de plage, notamment dans la direction cross-shore. Le cas bichromatique montre quant à lui une convergence du profil de plage vers un état qui ne dépendrait que du forçage en entrée. L’interaction d’une seule onde infragravitaire avec l’onde gravitaire ne peut donc pas être responsable de la variabilité du fond observée avec le forçage aléatoire. En revanche, cette étude semble confirmer la présence d’événements particuliers à l’origine d’une forte modification du fond sableux. Le lien entre ces événements et l’interaction entre des événements hydrodynamiques spécifiques et la forme du fond n’est pas encore complètement établi. Enfin, pour le forçage aléatoire la variabilité transverse induite par les ondes courtes est forte alors qu’elle semble plus faible à l’échelle de l’onde longue. Pour le forçage bichromatique, cette variabilité transverse a également pu être observée mais son lien avec le forçage reste encore à élucider. / This study investigates the morphological evolution in the swash zone at high spatial and temporal resolution to be able to analyze the swell influence. The study is here based on two measurement campaigns in the large CIEM wave flume (Barcelona), using both a random erosive JONSWAP and bichromatics forcing. The originality of the proposed study lies on analysis, by an optical stereoscopic method, of bottom evolution with a very good precision while getting an accurate quantification of water fronts evolution on a continuous area, most of the measurement techniques generally allowing only to obtain punctual measurements in this area. The sand bed position is estimated with an accuracy of a few hundred μm. Over long periods, erosive JONSWAP forcing generates an overall and almost homogeneous backward movement in the swash area. However, this trend does not appear to influence the hydrodynamics response that remains similar in the swash area when the series is repeated. This was confirmed in the bichromatic forcings case, repeated on different bottoms. During a random forcing series, different time scales are observed : the gravity scale (characteristic period of the signal) and infragravity waves (wide range of longer events). This coexistence of several time scales could be associated with the observation of a strong variability of the beach profile, especially in the cross-shore direction. The bichromatic case shows meanwhile convergence of beach profile to a state that would depend only on forcing conditions. The interaction of a single infragravity wave with the gravitational wave can therefore not be responsible for the observed bottom variability with the random forcing. In contrast, the present study seems to confirm the presence of specific events responsible of a strong change in the sandy bottom. The link between these events and the hydrodynamic interaction between specific events and the bottom shape is not yet completely established. Finally, for the random forcing the transverse variability induced by short wave is strong as it seems weak at long wave time scale. For bichromatic forcing, the transverse variability has also been observed but its link with the forcing still remains to be elucidated.
|
Page generated in 0.0736 seconds