• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 403
  • 144
  • 91
  • 66
  • 39
  • 24
  • 14
  • 11
  • 11
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 947
  • 141
  • 135
  • 130
  • 127
  • 113
  • 94
  • 86
  • 73
  • 63
  • 62
  • 59
  • 59
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Vertikalios ašies vėjo jėgainės sparno modeliavimas / FEM modeling of vertical wind turbine using CFD solvers

Dinsmonas, Darius 01 August 2013 (has links)
Magistriniu darbu, kurio tema “Vertikalios ašies vėjo jėginės sparno modeliavimas“, siekiama ištirti mažos galios, paprastos konstrukcijos, vertikalios ašies vėjo jėgainės sparnuotes, atlikti jų kompiuterinį modeliavimą ir analizę. Tema yra aktuali dėl to, kad norint būti energetiškai nepriklausomiems, reikia ieškoti alternatyvių energijos šaltinių, kurie būtų neišsenkantys, prieinami daugeliui vartotojų. Vienas iš tokių - vėjo srauto energija, tačiau gyvenant tankiai užstatytoje, geografiškai šiurkščioje aplinkoje, tenka ieškoti mažų matmenų, mažos galios įrenginių, kurie pajėgtų dirbti esant mažiems vėjo greičiams ir sūkurinėmis sąlygomis, nedarkytų gamtos ar pastatų estetinės išvaizdos, nekeltų triukšmo ir būtų kuo lengviau aptarnaujami. Atliekant tyrimą, VAVJ sparno modelio analizės skaičiavimai buvo daromi remiantis bendrąja hidrodinaminių srautų teorija, naudojant baigtinių elementų analizės, projektavimo ir modeliavimo programą - COMSOL Multiphysics. Atlikti tyrimai parodė, kad didesnį sukimo momentą gausime naudodami uždarų galų rotorius, o įrengus oro srautą kreipiančias mentes, slėgis į rotoriaus sparną ženkliai išauga. Statant šachmatine tvarka keletą VAVJ, didžiausią slėgį į sparnuotes gausime esant 6 kartus didesniam atstumui nei sparnuočių spindulys. / The aim of this master's dissertation on the theme of "FEM modeling of vertical wind turbine using CFD solvers" is to investigate the low-power, simple design, vertical axis wind turbine impellers and to carry out their computer simulation and analysis. The theme is of great importance so as to be energectically independent, it is also necessary to look for alternative energy sources that are inexhaustible and accessible to many users. One of them - the wind flow energy, but living in a densely built-up, geographically rough environment forces us to look for small footprints, low-power devices that would be able to work at low wind speeds and eddy terms wouldn't damage natural and aesthetic appearance of the buildings making no noise and also maximize opportunities to be serviced. The study of VAWT wing pattern analysis calculations were made based on the general theory of hydrodynamic flows, using finite element analysis, as well as design and simulation software - COMSOL Multiphysics. Research has shown that we will get bigger torque while using closed ends of the rotors, and the installation of air flow directing vanes, the pressure in the rotor wing significantly increases. Constructing in a checkered order a few VAWT, the greatest pressure on the impellers receives 6 times greater distance than the impeller radius.
292

Adrenocortical function in postnatally developing American kestrels (Falco sparverius)

Love, Oliver Patrick. January 2001 (has links)
This project investigated postnatal development of the adrenocortical function in captive American kestrels (Falco sparverius) employing measurements of basal and stress-induced levels of corticosterone at specific developmental stages. Chicks aged 10-days exhibited partially functioning adrenocortical systems with baseline levels comparable to adults. The ability to respond to external stressors increased through postnatal development and by the age of 22 days, stress-induced maximal levels of corticosterone were indistinguishable from those of one-year old adults, and levels of 28-day old birds were significantly higher than these adults. In addition, baseline and maximum stress-induced levels of corticosterone at all ages were significantly higher in first-hatched chicks than all other siblings and these effects grew stronger through development. These results suggest that the brain-pituitary-adrenal axis in this semi-altricial species is (1) already partially developed in young chicks and (2) only becomes fully functional when behavioral and neuromuscular development is nearly complete. Furthermore, results from this study suggest that hatching asynchrony has an effect on this variation in stress-induced maximal levels of corticosterone during the latter half of postnatal development, with a higher degree of hatching asynchrony leading to larger disparity in adrenocortical function between first- and fourth-hatched chicks. This adrenocortical disparity resulting from female-mediated hatching asynchrony may potentially lead to both brood-reduction and brood survival under diametric food conditions, ensuring that the female's reproductive fitness is maximized in varying habitats. Variation of adrenocortical function among siblings may increase female efficiency in raising a brood of fit chicks, maximizing her reproductive success.
293

Influence of Stress and Cytokinic Profiles on Cognitive Performance in Older Adults

Rawson, Kerri S. 01 January 2012 (has links)
ABSTRACT With aging, changes in the immune system, makes cognitive performance, and the prevalence of stressors can lead to poorer overall functioning. Within the immune system, a balance should exist between cytokines regulating Th1 and Th2 immune responses; however, age-related declines in the endocrine and immune systems can disrupt this equilibrium. Several studies report higher levels of Th1 associated cytokines in inflammatory conditions of the brain, whereas fewer studies remark on Th2 associated cytokines and cognitive functioning. Declining cognitive abilities are a common concern that accompanies advancing age and some research has suggested the prevalence and impact of stressors lead to poorer performance. Participants included 92 older adults (M = 74.05 years) who completed tests of cognitive performance and stress measures, and 41 persons who had valid data on Th1 and Th2 cytokines. The results indicated that increasing age is significantly associated with several cognitive domains including executive functioning, speed of processing, and episodic memory. As hypothesized, moderation analysis revealed the relationship between Th1 and Th2 cytokinic profiles, as denoted by the IFN-γ/IL-4 ratio, is a significant moderator between stress and cognitive performance. Specifically, immune profiles skewed towards Th1 predict a significant amount of variation between high stress scores and low cognitive performance, whereas this was not found for immune profiles skewed towards Th2. Overall, the current study suggests that a pro-inflammatory state permits stress to exert a negative influence on cognitive performance.
294

Hydro-Kinetic Energy Conversion : Resource and Technology

Grabbe, Mårten January 2013 (has links)
The kinetic energy present in tidal currents and other water courses has long been appreciated as a vast resource of renewable energy. The work presented in this doctoral thesis is devoted to both the characteristics of the hydro-kinetic resource and the technology for energy conversion. An assessment of the tidal energy resource in Norwegian waters has been carried out based on available data in pilot books. More than 100 sites have been identified as interesting with a total estimated theoretical resource—i.e. the kinetic energy in the undisturbed flow—in the range of 17 TWh. A second study was performed to analyse the velocity distributions presented by tidal currents, regulated rivers and unregulated rivers. The focus is on the possible degree of utilization (or capacity factor), the fraction of converted energy and the ratio of maximum to rated velocity, all of which are believed to be important characteristics of the resource affecting the economic viability of a hydro-kinetic energy converter. The concept for hydro-kinetic energy conversion studied in this thesis comprises a vertical axis turbine coupled to a directly driven permanent magnet generator. One such cable wound laboratory generator has been constructed and an experimental setup for deployment in the river Dalälven has been finalized as part of this thesis work. It has been shown, through simulations and experiments, that the generator design at hand can meet the system requirements in the expected range of operation. Experience from winding the prototype generators suggests that improvements of the stator slot geometry can be implemented and, according to simulations, decrease the stator weight by 11% and decrease the load angle by 17%. The decrease in load angle opens the possibility to reduce the amount of permanent magnetic material in the design.
295

Role of G Protein-coupled Receptor Kinase 5 in Desensitisation of the V1b Vasopressin Receptor in Response to Arginine Vasopressin

van Bysterveldt, Katherine January 2011 (has links)
Arginine vasopressin (AVP) is a hypothalamic nonapeptide which regulates the hypothalamic-pituitary-adrenal axis response to stress by stimulating the secretion of adrenocorticotropin (ACTH) from corticotroph cells of the anterior pituitary. This effect is mediated by binding of AVP to the pituitary vasopressin receptor (V1bR). The V1bR belongs to the G protein-coupled receptor (GPCR) super family. Repeated stimulation of anterior pituitary cells with AVP has been shown to produce a loss of responsiveness to subsequent AVP stimulation. This phenomenon appears to be mediated by desensitisation of the V1bR, and may be due to phosphorylation of the receptor by G protein-coupled receptor kinase 5 (GRK5). The aim of this research was to establish and validate methods that would allow the role of GRK5 in the desensitisation of V1bR to AVP stimulation to be investigated. As no isoform specific inhibitors for GRK5 were available, HEK293 cells transiently transfected with the rat V1bR were used as a model system for this research. This allowed RNA interference (RNAi) to be used to knockdown GRK5 expression. The protocol for RNAi-mediated knockdown of GRK5 was established as part of this research. Protocols for Western blotting and qRT-PCR were also established to allow the RNAi-mediated knockdown of GRK5 protein and mRNA to be measured. Transfection of HEK293 cells with 10nM GRK5-targeting small interfering RNAs (siRNAs) reduced the expression of GRK5 protein to 53.4% ± 3.4% (mean ± SEM) of that seen in untreated control cells at 84 hours after transfection, while GRK5 mRNA levels were reduced to 28.7% ± 1.9% (mean ± SEM) of that of control cells 48 hours after transfection. An experimental protocol was designed in this research that would coordinate the RNAi-mediated knockdown of GRK5 with transient transfection of the HEK293 cells with the rV1bR. Since, activated V1bRs couple to Gq/11 and stimulate the production of inositol phosphates (IPs), the responsiveness of the V1bR can be determined by measuring the accumulation of [H³]-IPs in cells labelled with [H³]-myo-inositol. In the protocol designed, the effect of GRK5 knockdown on V1bR desensitisation is determined by stimulating HEK293 cells expressing the rV1bR (and previously transfected with GRK5-targeting siRNA) with 0nM or 100nM AVP for 0, 5, 15, 30 or 60 minutes, and comparing the accumulation if IPs over time with that of cells that are not transfected with GRK5-targeting siRNA. This protocol can be used in future to investigate the role of GRK5 in V1bR desensitisation, and may be adapted to determine if other GRK isoforms are involved in V1bR desensitisation.
296

Development of a rig and testing procedures for the experimental investigation of horizontal axis kinetic turbines

Lartiga, Catalina 30 April 2012 (has links)
The research detailed in this thesis was focused on developing an experimental testing system to characterize the non-dimensional performance coefficients of horizontal axis kinetic turbines, including both wind turbines and tidal turbines. The testing rig was designed for use in a water tunnel with Particle Image Velocimetry (PIV) wake survey equipment to quantify the wake structures. Precision rotor torque measurement and speed control was included, along with the ability to yaw the rotor. The scale of the rotors were purposefully small, to enable rapid-prototyping techniques to be used to produce many different test rotors at low cost to furnish a large experimental dataset. The first part of this work introduces the mechanical design of the testing rig developed for measuring the output power of the scaled rotor models with consideration for the requirements imposed by the PIV wake measurements. The task was to design a rig to fit into an existing water tunnel facility with a cross sectional area of 45 by 45 cm, with a rotor support structure to minimize the flow disturbance while allowing for yawed inflow conditions. A rig with a nominal rotor diameter of 15 cm was designed and built. The size of the rotor was determined by studying the fluid similarities between wind and tidal turbines, and choosing the tip speed ratio as a scaling parameter. In order to maximize the local blade Reynolds number, and to obtain different tip speed ratios, the rig allows a rotational speed in the range of 500 to 1500 RPM with accurate rotor angular position measurements. Rotor torque measurements enable rotor mechanical power to be calculated from simulation results. Additionally, it is included in this section a description of the instrumentation for measurement and the data acquisition system. It was known from the outset that measurements obtained in the experiments would be subject to error due to blockage effects inherent to bounded testing facilities. Thus, the second part of this work was dedicated to developing a novel Computational Fluid Dynamics (CFD) methodology to post-process the experimental data acquired. This approach utilizes the velocity field data at the rotor plane obtained from the water tunnel PIV test data, and CFD simulations based on the actuator disk concept to account for blockage without the requirement for thrust data which would have been unreliable at the low forces encountered in the tests. Finally, the third part of this work describes the practical aspects of the laboratory project, including a description of the operational conditions for turbine testing. A set of preliminary measurements and results are presented, followed by conclusions and recommendations for future work. Unfortunately, the water tunnel PIV system was broken and thus unavailable for more than a year, so only mechanical measurements were possible with the rig during the course of this thesis work. / Graduate
297

Motion control and synchronisation of multi-axis drive systems

Chen, Changmin January 1994 (has links)
No description available.
298

Effects of Chronic Maternal Stress on Behaviour and Hypothalamo-pituitary-adrenal Function in Offspring

Emack, Jeffrey 15 August 2013 (has links)
Maternal stress during the perinatal period has been linked to attention and behavioral problems and increased adrenocortical activity in children. Underlying this relationship is thought to be exposure to excessive glucocorticoids during development. The aim of this set of studies was to determine the effects of chronic maternal stress (CMS) during the perinatal period on behaviour and endocrine function in male and female guinea pig offspring at the juvenile and adult life stage. Environmental enrichment was investigated as a potential therapeutic tool to reverse changes induced by CMS. Pregnant guinea pigs were exposed to a sequence of stressors every other day over the second half of gestation until weaning on postnatal day 25. Offspring were tested for ambulatory activity, attention, cognitive function, sex-steroid levels and adrenocortical function. One cohort of animals were housed in an enriched environment, the remaining offspring were housed in standard conditions. A separate cohort was administered amphetamine (1 mg/kg) prior to behavioural testing to determine influence of CMS on dopaminergic function. Juvenile male and female offspring of mothers exposed to stress exhibited increased basal and decreased stress-induced salivary cortisol, and male offspring displayed reduced activity and a phase shift in their circadian rhythm of activity. Adult male offspring of CMS mothers exhibited increased activity in a novel environment and decreased activity in a familiar environment. Female adult offspring of CMS mothers exhibited reduced attention and increased activity in a novel environment. Enrichment acted independently of CMS, increasing plasma testosterone and attention in adult male offspring and reducing the adrenocortical response to stress and decreasing attention and activity in female offspring. Amphetamine decreased activity in a novel environment and increased activity in a familiar environment in both sexes, regardless of age or maternal treatment. Amphetamine improved attention in juvenile and adult males. The current studies demonstrated a strong effect of CMS on behaviour in juvenile and adult offspring. Enrichment was not effective for attenuating the effects of CMS. These studies clearly demonstrate behavioural changes as a result of CMS emerge over the lifetime of the offspring and have begun to uncover the underlying mechanisms of programming.
299

Effects of Chronic Maternal Stress on Behaviour and Hypothalamo-pituitary-adrenal Function in Offspring

Emack, Jeffrey 15 August 2013 (has links)
Maternal stress during the perinatal period has been linked to attention and behavioral problems and increased adrenocortical activity in children. Underlying this relationship is thought to be exposure to excessive glucocorticoids during development. The aim of this set of studies was to determine the effects of chronic maternal stress (CMS) during the perinatal period on behaviour and endocrine function in male and female guinea pig offspring at the juvenile and adult life stage. Environmental enrichment was investigated as a potential therapeutic tool to reverse changes induced by CMS. Pregnant guinea pigs were exposed to a sequence of stressors every other day over the second half of gestation until weaning on postnatal day 25. Offspring were tested for ambulatory activity, attention, cognitive function, sex-steroid levels and adrenocortical function. One cohort of animals were housed in an enriched environment, the remaining offspring were housed in standard conditions. A separate cohort was administered amphetamine (1 mg/kg) prior to behavioural testing to determine influence of CMS on dopaminergic function. Juvenile male and female offspring of mothers exposed to stress exhibited increased basal and decreased stress-induced salivary cortisol, and male offspring displayed reduced activity and a phase shift in their circadian rhythm of activity. Adult male offspring of CMS mothers exhibited increased activity in a novel environment and decreased activity in a familiar environment. Female adult offspring of CMS mothers exhibited reduced attention and increased activity in a novel environment. Enrichment acted independently of CMS, increasing plasma testosterone and attention in adult male offspring and reducing the adrenocortical response to stress and decreasing attention and activity in female offspring. Amphetamine decreased activity in a novel environment and increased activity in a familiar environment in both sexes, regardless of age or maternal treatment. Amphetamine improved attention in juvenile and adult males. The current studies demonstrated a strong effect of CMS on behaviour in juvenile and adult offspring. Enrichment was not effective for attenuating the effects of CMS. These studies clearly demonstrate behavioural changes as a result of CMS emerge over the lifetime of the offspring and have begun to uncover the underlying mechanisms of programming.
300

Time-Optimal Trajectory Generation for 5-Axis On-the-Fly Laser Drilling

Alzaydi, Ammar January 2011 (has links)
On-the-fly laser drilling provides a highly productive method for producing hole clusters (pre-defined groups of holes to be laser drilled) on freeform surfaced parts, such as gas turbine combustion chambers. Although the process is capable of achieving high throughputs, current machine tool controllers are not equipped with appropriate trajectory functions that can take full advantage of the achievable laser drilling speeds. While the problem of contour following has received previous attention in time-optimal trajectory generation literature, on-the-fly laser drilling presents different technological requirements, needing a different kind of trajectory optimization solution, which has not been studied prior to this thesis. The duration between consecutive hole locations, which corresponds to the laser pulsing period, has to be kept constant, ideally throughout the part program. However, the toolpath between the holes is not fixed and can be optimized to enable the shortest possible segment duration. To preserve the dynamic beam positioning accuracy and avoid inducing excessive vibrations on the laser optics, the axis velocity, acceleration, and jerk profiles need to be limited. Furthermore, to ensure that hole elongation does not violate the given part tolerances, the orthogonal component of part velocity relative to the laser beam needs to be capped. All of these requirements have been fulfilled in the trajectory optimization algorithm developed in this thesis. The hole locations are provided as pre-programmed sequences by the Computer Aided Design/Manufacturing software (CAD/CAM). A time-optimized trajectory for each sequence is planned through a series of time-scaling and unconstrained optimization operations, which guarantees a feasible solution. The initial guess for this algorithm is obtained by minimizing the integral square of the fourth time derivative (i.e. ‘snap’). The optimized trajectories for each cluster are then joined together or looped onto themselves (for repeated laser shots) using a time-optimized looping/stitching (optimized/smooth toolpath to repeat/loop a cluster or connect/stitch between consecutive clusters) algorithm. This algorithm also minimizes the integral square of jerk in the faster axes. The effectiveness of the overall solution has been demonstrated in simulations and preliminary experimental results for on-the-fly laser drilling of a hole pattern for a gas turbine combustion chamber panel. It is shown that the developed algorithm improves the cycle time for a single pass by at least 6% (from kinematic analysis of the motion duration), and more importantly reduces the integral square of jerk by 56%, which would enable the process speed to be pushed up further.

Page generated in 0.3997 seconds