• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 99
  • 22
  • 11
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 316
  • 91
  • 34
  • 29
  • 28
  • 27
  • 24
  • 21
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The influence of developmental patterns on vertebrate evolution, with the evolution of the sacrum and pelvis as a case study

Griffin, Christopher Thomas 03 June 2020 (has links)
Patterns of organismal development—including embryonic morphogenesis, postnatal ontogenetic trends, and growth—are fundamental to understanding the evolution of phenotypes. Consideration of these processes is necessary to construct a holistic and rigorous account of morphological evolution. Therefore, the integration of both the fossil record (actualistic observations of changes in morphology through Earth history) and observations of extant clades (comparative patterns of pre- and postnatal development) is required to study the evolution of form across deep time. The pelvic complex plays a central role in tetrapod locomotion with the exception of taxa lacking hindlimbs (e.g., whales, snakes, caecilians). This complex, composed of the pelvic girdle (ilia, ischia, and pubes) and the sacrum (vertebrae articulated with the ilia via sacral ribs) is in some aspects highly conserved through amniote evolution: all terrestrial amniotes with functional hindlimbs retain the same bones of the pelvic girdle in roughly the same configuration with each other and a sacrum consisting of at least two vertebrae, the ancestral amniote condition. Despite the retention of this basic plan, the pelvic complex of many groups is characterized by extreme deviations from the ancestral condition. Therefore, the evolution of the pelvis and sacrum across amniotes—especially among archosaurs, which possess highly derived variations of the pelvic complex in response to the evolution of novel baupläne—provides an excellent case study to explore the influence of developmental patterns on the evolution of morphology. The first chapter of my dissertation reviews the methods that have been used to study reptilian growth and maturity in the fossil record. I clarify often ambiguous terminology and highlight clade-specific best practices for assessing growth in extinct reptiles. The second chapter uses the dicynodont sacrum as a case study to explore the evolution of novel morphologies along the normally constrained synapsid lineage that are convergent on several archosaurian innovations, integrating comparative anatomy, comparative phylogenetic methods, and developmental biology. The third chapter utilizes a new technique (modified CLARITY protocol) for imaging the soft tissues of developing embryos to explore the morphogenesis of the avian pelvic complex, finding that the derived avian condition arrives late in development, with plesiomorphic—more typically "dinosaurian"—character states being present at the outset of musculoskeletal development. / Doctor of Philosophy / Every animal's anatomy is determined by the developmental processes they undergo during their life history. Because of this, understanding these developmental processes is a key part of determining how animals have evolved into the many disparate forms we see today. Conversely, it is only through the fossil record that the actual history of anatomical evolution can be observed, so a holistic account of the pattern and process underlying evolution must integrate both developmental biology and paleontology. The pelvic complex—the hips and the vertebrae articulated with the hips—plays a fundamental role in how all nearly land vertebrates move (with the exception of legless groups). In some ways, the pelvic complex is very similar across all groups of mammals, reptiles, and their extinct close relatives: all retain the same three bones of the pelvis in roughly the same configuration with each other, and all possess a sacrum consisting of at least two vertebrae, the ancestral condition. Despite the retention of this basic plan, the pelvic complex of many groups is characterized by extreme deviations from the ancestral condition, with the three pelvic bones having highly disparate shapes and proportions. Therefore, the evolution of the pelvis and sacrum across mammals, reptiles, and their extinct relatives—especially among archosaurs (the reptilian group containing crocodylians and birds), which possess highly derived variations of the pelvic complex in response to the evolution of novel body plans—provides an excellent case study to explore the influence of developmental patterns on the evolution of animal form. The first chapter of my dissertation reviews the methods that have been used to study reptilian growth and maturity in the fossil record. I clarify often ambiguous terminology and highlight group-specific best practices for assessing growth in extinct reptiles. The second chapter uses the evolution of the sacrum among extinct mammal relatives as a case study to explore the evolution of novel anatomy along the normally conservative mammalian lineage, integrating comparative anatomy, evolutionary statistics, and developmental biology. The third chapter utilizes a new technique for imaging the soft tissues of developing embryos to explore the origins of the highly unusual pelvic complex in birds, finding that the distinctive bird anatomy arrives late in development, with ancestral—more typically "dinosaurian"—features being present at early-stage embryos of birds.
42

Ontogenic Morphology and Enzyme Activities of the Intestinal Tract of the Nile Tilapia, Oreochromis Niloticus

Tengjaroenkul, Bundit 02 May 2000 (has links)
The gross intestinal configuration of the Nile tilapia intestine changed dramatically from a short, straight intestinal tube at hatch (day 0) to a very complex, coiling pattern first attained at 9 weeks post-hatch. During the developmental period, gut length increased from 90% to 410% of body length. The rate of increase in both intestinal and body lengths took place at an accelerating rate as the fish aged. The great intestinal length provides an advantage to the fish in digestion and absorption of nutrients present in the less energy-efficient herbivorous diet. Formulation of commercial diets to match the development of the fish's intestine may offer commercial advantage. Appearance, localization and distribution of intestinal enzymes were observed in the fish at hatch and at mature stages using enzyme histochemistry. At hatch (day 0), most gut enzymes were already present in the intestinal brush border. As the fish matured, activities of the enzymes were widely distributed along the intestinal tract. The early appearance and broad distribution of activities of all studied intestinal enzymes may be one factor contributing to the rapid growth rate characteristic of tilapia, which differs markedly from other fish species. To investigate the possibility of using alfalfa as a potential protein food replacement in tilapia, the effects of different levels of alfalfa in feeds on growth and intestinal enzyme activities were observed in the fish aged 3-15 weeks. Results demonstrated that replacing 20% and 40% of a commercial diet with alfalfa had an overall negative effect on body and intestinal growth, as well as the intestinal enzyme activities from age 3-9 weeks. Thus, using alfalfa as a food replacement is not optimal for fish of these young ages, but may yet be suitable for older fish. / Ph. D.
43

Effect of temporal increases in prey fish abundance on individual growth rates of coastal piscivores

Penner, Johan January 2016 (has links)
Commercial fishing in the Baltic Sea has led to decrease in abundance of large predatory fish and as a result the predation pressure on smaller fish species has been reduced. Three-spined stickleback (Gasterosteus aculeatus) is among the species that have benefited from reduced predation pressure. Sticklebacks are a small fish species that spends its juvenile stage in coastal habitat and its adult stage in the open sea with a yearly migration from the sea to coastal habitat and lakes for spawning. Sticklebacks have been shown to have a negative effect on fry of coastal species, such as perch (Perca fluviatilis). Therefore an increase in stickleback abundance, as a consequence of reduced predation pressure, can potentially further reduce abundance of fry of coastal species, such as perch. On the other hand sticklebacks could be subject to predation from adult perch. This two-species interaction is studied in the perspective of general ecological IGP (intra guild predation) theory. In order to determine how the observed increase of three-spined sticklebacks negatively or positively affects the growth of different stages of perch, a time series of operculum bones from perch collected by the coastal monitoring program prior to the increase of sticklebacks and up until present was analyzed. Three areas along the Swedish coast showing increased stickleback abundance (Gaviksfjärden, Norrbyn and Holmön) were compared to areas that had no sticklebacks or only a small increase in abundance (Kinnbäcksfjärden, Råneåfjärden, Långvindsfjärden) prior and after the general increase in stickleback density. In addition to the growth analysis, a dietary analysis of perch was carried out in order to determine to what extent perch utilize sticklebacks as a food source. I found that there were significant differences in regard to perch growth between the two time periods; however there was no significant difference in growth between the control areas and the stickleback areas except for perch of medium size. Further, this difference in growth between the control and stickleback areas was present both before and after the stickleback increase and could therefore not be tied directly to stickleback increase. Consequently, results from a multiple regression showed that stickleback abundance was not able to significantly explain the observed changes in perch growth. The dietary analysis showed that larger and intermediate perch tend to consume sticklebacks as well as benthic fauna and other fish species while smaller perch tended to feed exclusively on smaller invertebrates. This study concluded that the increase in stickleback abundance had only a very weak effect on perch growth.
44

The ontogeny of respiration in herring and plaice larvae

De Silva, Celine Dawn January 1973 (has links)
The study of larvae, their behaviour & physiology has gathered momentum in recent years due to the development of improved techniques of rearing during the past decade. Many marine larvae have been successfully reared in the laboratory (Shelbourne, 1964; Schumann, 1967; Blaxter, 1968,1969; Houde & Palko, 1970; Futch & Detwyler, 1970; Lasker, Feder, Theilacker & May, 1970). Fish larvae, in particular those of most marine species form an important tool for research in that at hatching they only possess the rudiments of most organs. Thus they are ideal material for ontogenetical studies. Although the respiratory mechanisms of adult fish have been the subject of a great deal of investigation from the point of view of gas exchange (see Randall 1970) gill structure (Hughes, 1966; Hughes & Grimstone, 1965; Newstead, 1967; to name a few) and dimensions (see Muir, 1969) gill ventilation and perfusion (see Shelton, 1970) circulatory systems (see Randall, 1970) bioenergetics, (see Brett, 1970) the respiratory systems of larvae have not been investigated in any great detail. Apart from a few studies on oxygen uptake (see Blaxter, 1969) and Harder (1954) on the development of branchial elements, no detailed study of the development of respiratory mechanisms have been made in marine fish larvae. The purpose of this study was to investigate the development of respiration in two species of marine larvae viz. the herring (Clupea harengus L.) and the plaice (Pleuronectes plates sa L.) These two species are well separated taxonomically and both adults and young have very different life histories. Herring lay demersal eggs, the plaice pelagic ones. The yolk-sac larvae of both species are planktonic, later feeding on diatoms and copepod nauplii and much later copepods. Adult herring are pelagic, living in mid water as juveniles and moving into deeper water with age, ranging from offshore to about 200m. They perform migrations partly caused by the distribution and density of food organisms. In contrast to this plaice at metamorphosis show an interesting asymmetry in that one eye migrates over the head and comes to lie against its opposite number. At this stage pelagic life ceases and the young fish assumes a bottom-living existence. Other features associated with asymmetry are secondary to the migration of the eye and follow on from the adoption of the benthic mode of life. They range from the shoreline when young to lOOOm feeding on bottom living organisms. During development the mechanism of respiration changes from a cutaneous one to gill respiration typical of the adult form. There is apparently no respiratory pigment in the early stages but the blood becomes pink at metamorphosis. The problem was approached from a morphological and a physiological viewpoint. The main parts of the study are as follows. (1) The survival times in water of low oxygen concentrations. (2) The oxygen uptake at normal oxygen concentrations. (3) The oxygen uptake at low oxygen concentrations. (4) Measurement of the body surface area as well as the gill area available for respiration. (5) The appearance of haemoglobin and its quantitative measurement.
45

Proliferation and lineage potential in fetal thymic epithelial progenitor cells

Cook, Alistair Martin January 2010 (has links)
The thymic stroma primarily comprises epithelial, mesenchymal and endothelial cells, interspersed with those of haematopoietic origin. Thymic epithelial cells (TECs) are highly heterogeneous, but can be divided into two broad lineages, cortical and medullary, based on phenotype, functionality and location. A population of Plet1+ TEC progenitors have been identified which, when isolated from mouse E12.5 or E15.5 fetal thymus, reaggregated, and grafted, can produce a functional thymus. However, the potential of individual progenitors to form cortex and/or medulla is undefined. The main aim of this thesis was to use retrospective clonal analysis to ascertain the point during thymus ontogeny at which the cortical and medullary lineages diverge. To this end, I used transgenic mice carrying a ubiquitous ROSA26laacZ reporter gene (where a duplication within lacZ encodes non-functional b-galactosidase). Here, rare, random laacZ-lacZ genetic recombinations result in heritable expression of functional b-gal, producing labelled clones. As this occurs at a known frequency, determination of TEC numbers would enable calculation of the expected number of TEC clones present throughout ontogeny. Due to the lack of quantitative data on all thymic cell populations, I determined the size not only of TEC (lin-EpCAM+), but also haematopoietic (CD45+), mesenchymal (lin-PDGFRa+ and/or lin-PDGFRb+) and endothelial (lin-CD31+) populations from E12.5 until E17.5. I then showed that the absolute number of Plet1+ TECs remains constant during this time, although the proportion of Plet1+ cells in cycle decreases. From these collective data, I propose a model for the role of the Plet1+ population in thymus development, in which Plet1+ cells continually give rise to Plet1- TECs in a self-renewing manner. Finally, I present a ‘dual origin coefficient’ strategy for analysis of a library of prospective TEC clones. I calculated the number of TEC lacZ+ clones expected to be present throughout thymus ontogeny, selecting an appropriate developmental stage for analysis. Although I observed several clones of apparent mesenchymal origin, supporting a single origin for intrathymic and capsular mesenchyme at E15.5, I observed no TEC clones in this extensive analysis. The CpG content of the ROSA26 promoter suggests a possibility of methylation-induced silencing brought about by de novo methylation of the lacZ reporter gene.
46

Farmakologické ovlivnění motoriky mláďat laboratorního potkana / The pharmacological influencing of motor skills in juvenile laboratory rats

Stehlíková, Mariana January 2009 (has links)
Ganaxolone is a new potencional antiepileptic drug, synthetic analog of allopregnanolone which is a metabolite of progesterone. Preclinical and clinical studies point out its anticonvulsive effect in the treatment of both partial and generalized seizures including refractory epilepsy. The aim of our research was to investigate changes in the motor performance of the immature rats after administration of ganaxolone. We also focused on the relation between motoric impairment and the age of the rats which correlates with the age of children. 90 immature rats of age 12, 18 and 25 days were tested. Rats were divided in three groups injected with doses of 20 mgGNX/kg or 40 mgGNX/kg and the control group. The tests for assessing motor performance were chosen with respect to the maturation of sensorimotor reflexes from the following batery of tests: righting test, bar holding test, wire mesh test, negative geotaxis test and open field test. There were no significant differences before and after injection of the drug and in comparison with the control group not even in comparison of classes of age. We have demonstrated that the dose of ganaxolone effective against epileptic seizures does not markedly affect the motoric performance of the immature rats. Powered by TCPDF (www.tcpdf.org)
47

Ontogeny and cranial morphology of the basal carnivorous dinocephalian, anteosaurus magnificus from the tapinocephalus assembage zone of the South African Karoo

Kruger, Ashley 21 July 2014 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2014. / Anteosaurs (Therapsida: Dinocephalia: Anteosauria) were the dominant terrestrial predators during the late Middle Permian period and became extinct at the close of the Tapinocephalus Assemblage Zone. Only two genera of anteosaurs, Australosyodon and Anteosaurus, are recognised from the Karoo rocks of South Africa. A newly discovered small anteosaurid skull from the Abrahamskraal Formation is fully described. Because of its relatively large orbits, the unfused nature of its sutures, and the lack of replacement teeth in the dental alveoli, the specimen is considered to be a juvenile Anteosaurus magnificus. A full computer-aided 3-D reconstruction of the skull enabled cranial measurements to be taken for an allometric analysis which included twenty-three measurements and eleven specimens. Positive allometry was found for four of the measurements suggesting fast growing in the temporal region, and a significant difference in the development of the postorbital bar and suborbital bar between juveniles and adults. Phylogenetic research shows that the Russian anteosaurids to be forerunners to Anteosaurus, and because the juvenile Anteosaurus (BP/1/7074) manifests many features of both Syodon and Titanophoneus, it is suggested that ontogenetic growth of Anteosaurus follows Haeckel’s Law.
48

Competência para a expressão da fotossíntese CAM em plantas de Guzmania monostachia (Bromeliaceae) em diferentes fases ontogenéticas / Competence for CAM photosynthesis expression in different ontogenétic stages of plants of Guzmania monostachia (Bromeliaceae)

Hamachi, Leonardo 06 November 2013 (has links)
A Guzmania monostachia é uma espécie de bromélia heteroblástica, ou seja, na fase juvenil, ela apresenta a forma atmosférica e na fase adulta, ela adquire uma estrutura chamada de tanque, que pode armazenar água e nutrientes em momentos de seca esporádica. Ela também é reconhecida por ser C3-CAM facultativa, podendo ser induzida ao CAM através de estímulos ambientais como o a escassez d\'água. Estudos com outras espécies competentes para a expressão do CAM, há relatos de que tecidos jovens expressariam preferencialmente a fotossíntese C3 e passariam a expressar o CAM à medida que se tornassem maduros. No Laboratório de Fisiologia do Desenvolvimento Vegetal a indução do CAM em plantas adultas da espécie G. monostachia por déficit hídrico foi estudada e pôde-se constatar que essa bromélia possui folhas com regiões funcionais distintas: a porção basal seria responsável pela absorção de água e nutrientes e a porção apical encarregada de realizar, principalmente, a fotossíntese. Contudo, ainda não se possuía informação sobre como a ontogenia e as mudanças morfológicas estariam influenciando a competência para a expressão do CAM em folhas inteiras e nas diferentes porções foliares de G. monostachia. A fim de se caracterizar o CAM nesta espécie ao longo da ontogenia, foram selecionadas plantas em 3 fases ontogenéticas (Atmosférica, Tanque-1 e Tanque-2) e das fases Tanque-1 e 2 foram separados grupos de folhas representando 3 estágios de desenvolvimento (F1 - as 7 mais internas da roseta, F2- as 7 folhas seguintes da roseta e F3 - as 7 folhas localizadas mais na base da roseta). As plantas foram submetidas a 7 dias de déficit hídrico por meio da suspensão de rega. Outra coleta de material vegetal foi realizada com plantas Tanque-2 separando-se as folhas em grupos representando os mesmos 3 estágios de desenvolvimento utilizados no experimental anterior e dividindo-as em porções basal e apical. Medidas morfométricas foram feitas para caracterizar cada fase ontogenética. O teor de água dos tecidos das folhas foi determinado e o CAM foi detectado através do ensaio enzimático da PEPC, da MDH e da quantificação dos ácidos orgânicos (ácido cítrico e málico). As plantas Tanque-2 apresentaram mais que o dobro da capacidade de estocagem de água comparativamente às plantas Tanque-1. As plantas atmosféricas sofreram as maiores perdas de água em sua folhas (aproximadamente 50%); já as plantas com tanque tiveram decréscimos mais discretos no teor hídrico (em torno de 15%). Plantas de todas as fases ontogenéticas acumularam significativamente ácido málico durante a noite, evidenciando que, independente da ontogenia, as plantas foram competentes para expressar o CAM. De maneira semelhante, tanto as folhas mais jovens quanto as mais maduras exibiram acúmulos significativos de ácido málico, indicando que elas foram capazes de expressar o CAM nos 3 estágios de desenvolvimento escolhidos para este estudo. Portanto, no conjunto dos experimentais realizados, sugere-se que o fator mais importante para a expressão do CAM em plantas de G. monostachia seja o teor de água dos tecidos foliares e não a ontogenia. Plantas atmosféricas apresentaram a maior perda de água (aproximadamente 50%) concomitantemente à expressão do CAM. Já as regiões apicais dos grupos de folhas F1 das plantas Tanque-2 exibiram um decréscimo de 7% com acúmulo noturno de ácido málico e os grupos F2 e F3 perderam 12% da água de seus tecidos, resultando na inibição do CAM. Há indícios que o transporte de água nas plantas com tanque sob estresse hídrico ocorra das folhas mais maduras para as folhas mais jovens. Aparentemente, plantas jovens atmosféricas de G. monostachia possuem a capacidade de manter seu metabolismo mais ativo mesmo em condições que resultem em uma baixa quantidade de água nos tecidos foliares, indicando um certo grau de tolerância à seca. Ao contrário, nas plantas com tanque, essa capacidade parece não ser tão acentuada, sugerindo que esta fase esteja mais relacionada com estratégias de evitação à seca / Guzmania monostachia is a species of heteroblastic bromeliad, in other words, whereas in the juvenile phase, it assumes the atmospheric form, in the adult, it acquires a structure called a tank, by which water and nutrients can be stored in moments of sporadic drought. It is also recognized through being C3-CAM facultative, thus inducible to CAM through environmental stimuli, such as the lack of water. In the young plants of other species capable of CAM expression, there are reports of preferential C3 photosynthesis expression in young tissues, leading to CAM expression on reaching maturity. In the Laboratory of Plant Development Physiology, studies were made of CAM induction in adult plants of the species G. monostachia during the lack of water at times of drought. It was noted that this bromeliad possessed leaves with distinct functional regions: whereas the basal portion was responsible for the absorption of both water and nutrients, the apical was mainly responsible for photosynthesis. Nonetheless, there was no available information on how ontogeny and morphological changes could influence competence for CAM expression throughout the whole leaf, as well as in the different parts. In order to characterize CAM in this species throughout ontogeny, selection was concentrated on plants in the three ontogenetic phases (Atmospheric, Tank-1 and Tank-2), as well as in the Tank-1 and Tank-2 phases by separating groups of leaves representing the three stages of development in the rosette, viz., Stage1 - the seven inner-most leaves, Stage2 - the next seven, and Stage3 - the seven located more at the base. By suspending irrigation, all the plants were submitted to 7 days without water, whereupon further material was collected from Tank-2 plants. The leaves thus obtained were first divided into groups representing the same three developmental phases as used in the preceding experiment, and then separated into basal and apical portions. Morphometric measurement was applied to the characterization of each ontogenetic phase. Tissue water content in the leaves was defined, and CAM detected through PEPC enzymatic assaying, MDH, and organic acid (citric and malic) quantification. Tank-2 plants presented more than double the capacity to store water, when compared to Tank-1 plants. Whereas atmospheric plants underwent the greatest leaf-water loss (around 50%), the loss was less in those with tanks (around 15%). Significant nocturnal malic acid accumulation in plants in all the ontogenetic phases, placed in evidence plant competency for CAM expression, independent of the stage of development. Likewise, significant malic acid accumulation in both young leaves and more mature ones indicated their capacity for CAM expression in the three stages of development chosen for the present study. Thus, in the experiments carried out, it can be presumed that the most important factor for CAM expression in G. monostachia plants is leaf-tissue water content, and not ontogeny. Atmospheric plants presented the highest water loss (around 50%), which was concomitant with CAM expression. On the other hand, in the apical regions of Tank-2 plants, there was a drop of 7% in water content with nocturnal malic acid accumulation in stage-1 leaves, and a loss of 12% in tissue water in those in stage 2 and 3, with the consequential CAM inhibition. There is every indication that water-transport in tank plants undergoing water-stress occurs from more mature leaves to those younger. Apparently the more active metabolism in young G. monostachia atmospheric plants, even under conditions inducing low leaf-tissue water content, indicates a certain degree of drought tolerance. On the contrary, although this capacity in tank plants appears to be less accentuated, the tank phase is apparently more related to strategies for avoiding the effects of drought
49

Revisão sistemática e ontogenética dos materiais cranianos atribuídos ao gênero Mariliasuchus (Crocodyliformes, Notosuchia) e suas implicações taxonômicas e paleobiológicas / Sistematic and ontogenetic review of the cranial materials assigned to the genus Mariliasuchus (Crocodyliformes, Notosuchia) and its taxonomic and palaeobiological implications

Augusta, Bruno Gonçalves 22 November 2013 (has links)
Mariliasuchus amarali Carvalho & Bertini 1999 é um crocodilomorfo Notosuchia do Cretáceo da Bacia Bauru. Este táxon possui um registro fóssil relativamente comum, e diversos espécimes (incluindo animais juvenis) são conhecidos. Portanto, ele representa um dos poucos táxons fósseis que permitem uma análise ontogenética, e seu desenvolvimento foi comparado com o do gênero Caiman (incluindo C. latirostris, C. crocodilus e C. yacare), um crocodilomorfo atual de ampla distribuição pela América do Sul. Foram empregadas as seguintes metodologias para comparação das trajetórias ontogenéticas dos táxons fóssil e atual: descrição qualitativa, morfometria linear e morfometria geométrica. Os dados obtidos destacaram trajetórias ontogenéticas comuns aos dois táxons, que foram interpretadas como o resultado de um padrão plesiomórfico aos Crocodyliformes, e distintas trajetórias ontogenéticas que foram relacionadas, principalmente, a diferentes adaptações ecomorfológicas. A ocorrência de tendências ontogenéticas como a manutenção de uma fenestra supratemporal de grandes proporções ao longo da ontogenia, a expansão anterior do articular e do côndilo mandibular do quadrado, o aumento na espessura da camada de esmalte dentário e a alometria positiva das fenestras infratemporal e mandibular sugerem que Mariliasuchus amarali aumentava gradativamente seu controle e capacidade de processamento alimentar ao longo de seu desenvolvimento. A análise ontogenética também mostrou fortes evidências de que o espécime UFRJ-DG 56-R, interpretado por Nobre et al. (2007a) como uma nova espécie dentro do gênero Mariliasuchus (M. robustus), é na verdade um indivíduo de M. amarali em avançado estágio de desenvolvimento e não uma nova espécie. O espécime MZSP-PV 760 é descrito pela primeira vez no presente trabalho. Suas características anatômicas sugerem que o mesmo não é um indivíduo juvenil de Mariliasuchus, como pensado anteriormente, mas parece estar relacionado ao clado que inclui ambos M. amarali e Adamantinasuchus navae (outro crocodilomorfo da Bacia Bauru). MZSP-PV 760 representa o mais jovem crocodilomorfo pós-embrionário já descrito para o Cretáceo de Gondwana. Uma reanálise da dentição altamente heterodonte em M. amarali mostrou a ocorrência de um novo morfótipo dentário (pré-molariforme), descrito pela primeira vez no presente trabalho. Uma coroa de cada morfótipo dentário foi extraída do espécime MZSP-PV 813 para análise da microanatomia do esmalte dentário e do padrão de organização dos cristais de esmalte, descritos pela primeira vez para um Notosuchia. A descrição de um novo morfótipo dentário representa uma inesperada adição para uma já complexa condição heterodonte em M. amarali, corroborando com a hipótese de OConnor et al. (2010) de que os Notosuchia podem ter ocupado nichos ecológicos e ecomorfoespaços, durante o Cretáceo do Gondwana, tão complexos quanto os de mamíferos. / Mariliasuchus amarali Carvalho & Bertini 1999 is a notosuchian crocodyliform from the Cretaceous of Bauru Basin (Brazil). This taxon has a fossil record that is relatively common, and several specimens (including juveniles) are known. Therefore, it represents one of the few fossil taxa that allows an ontogenetic approach, and its development was compared with the genus Caiman (including C. latirostris, C. crocodilus and C. yacare), a widespread South American crocodyliform. I used the following methodologies for the comparison of the ontogenetic trajectories of the fossil and living taxa: qualitative description, traditional morphometrics and geometric morphometrics. The data highlighted common ontogenetic trajectories that were interpreted as the result of a plesiomorphic pattern for Crocodyliformes, and distinct ontogenetic trajectories that were related mainly to different ecomorphological adaptations. The occurrence of ontogenetic trends as the retention of a large supratemporal fenestra along the ontogenetic development, the anterior expansion of the articular and the articular condyle of the quadrate, the thickening of the enamel cap in the teeth crowns, and the positive allometry of both infratemporal and mandibular fenestrae, suggest that Mariliasuchus amarali gradually increased its control and capacity of food processing along its ontogeny. The ontogenetic analysis also provided compeling evidence that specimen UFRJ-DG 56-R, interpreted by Nobre et al. (2007a) as a new species of the genus Mariliasuchus (M. robustus), is actually an individual of M. amarali in an advanced stage of development rather than a new species. Specimen MZSP-PV 760 is described for the first time here. Its anatomical characteristics suggest that this individual is not a juvenile specimen of Mariliasuchus amarali, as previously thought, but rather appears to be related to the clade that includes both M. amarali and Adamantinasuchus navae (another Bauru Basin crocodyliform). MZSP-PV 760 represents the youngest post-hatchling crocodyliform described for the Cretaceous of Gondwana. A reevaluation of the highly heterodont dentition of M. amarali showed the occurrence of a new tooth morphotype (premolariform), described here for the first time. A crown from each tooth morphotype was extracted from the specimen MZSP-PV 813 to perform an analysis of the enamel microanatomy and organizational patterns of enamel crystallities, described for the first time within Notosuchia. The description of a new tooth morphotype represents an unexpected addition to an already complex heterodont condition in M. amarali, adding to OConnor et al.s (2010) hypothesis that Notosuchia could have filled complex niches and ecomorphospaces during the Cretaceous of Gondwana similar to the ones occupied by mammals.
50

Developing Spawning Protocols and Embryological Benchmarks for a Tropical Marine Fish (Albula spp.) in Captivity

Unknown Date (has links)
Relying on field research to complete the life history for certain fish species can be inadequate, but laboratory research can be used to fill these gaps. These gaps exist for Bonefish (Albula spp.), a tropical marine fish and popular sportfish. In this study, aquaculture techniques were applied to Bonefish in a captive setting at Harbor Branch Oceanographic Institute (HBOI) and Cape Eleuthera Institute (CEI) to induce spawning and describe early ontogeny. Photothermal manipulations and hormone injections were used to induce gonad maturation and spawning, which was achieved once at CEI and is the first record of hormone-induced spawning for Bonefish. From that spawn, egg and larval development were recorded and described through 26 hours and 56 hours respectively, representing the first record of these early life stages for Bonefish. This work expands upon what is known about Bonefish reproductive biology and will be useful for management and future captive research. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0567 seconds