Spelling suggestions: "subject:"opérateur dde thepoincaré"" "subject:"opérateur dde pooincaré""
1 |
Mathematical modelling and simulations of the hemodynamics in the eye / Modèles mathématiques et simulations numériques de l'hémodynamique de l'oeilAletti, Matteo Carlo Maria 30 May 2017 (has links)
La structure de l’oeil permet d’observer la microcirculation, grâce aux caméras de fond d’oeil. Ces appareils sont bon marché et couramment utilisés dans la pratique clinique, permettant le dépistage de maladies oculaires. La capacité des vaisseaux à adapter leur diamètre (autorégulation) afin de réguler le débit sanguin est importante dans la microcirculation. L’hémodynamique de l’oeil est impactée par la pression à l’intérieur du globe oculaire (IOP), qui est à son tour influencée par le flux sanguin oculaire. Les altérations de l’autorégulation et l’IOP jouent un rôle dans les maladies oculaires. La modélisation mathématique peut aider à interpréter l’interaction entre ces phénomènes et à mieux exploiter les données médicales disponibles. Dans la première partie, nous présentons un modèle simplifié d’interaction fluidestructure qui inclut l’autorégulation, appliqué à un reseau 3D obtenu par imagerie médicale. Les cellules musculaires lisses regulant le diamètre du vaisseau sont modélisés dans la structure. Ensuite, nous utilisons des équations de poroélasticité pour décrire le flux sanguin dans la choroïde, dans un modèle multi-compartiments de l’oeil. Cette approche permet de rendre compte de la transmission de la pulsatilité de la choroïde à la chambre antérieure, où l’IOP est mesurée. Nous présentons des résultats préliminaires sur la choroïde, l’humeur aqueuse et sur la choroïde couplée avec la vitrée. Enfin, nous présentons un modèle d’ordre réduit pour accélérer des simulations multi-physique. Des modèles de haute précision sont utilisés pour les compartiments d’intérêt et une représentation réduite de l’opérateur de Steklov-Poincaré est utilisée pour les autres compartiments. / The structure of the eye offers a unique opportunity to directly observe the microcirculation, by means, for instance, of fundus camera, which are cheap devices commonly used in the clinical practice. This can facilitate the screening of systemic deseases such as diabetes and hypertension, or eye diseases such as glaucoma. A key phenomenon in the microcirculation is the autoregulation, which is the ability of certain vessels to adapt their diameter to regulate the blood flow rate in response to changes in the systemic pressure or metabolic needs. Impairments in autoregulation are strongly correlated with pathological states. The hemodynamics in the eye is influenced by the intraocular pressure (IOP), the pressure inside the eye globe, which is in turn influenced by the ocular blood flow. The interest in the IOP stems from the fact that it plays a role in several eye-diseases, such as glaucoma. Mathematical modelling can help in interpreting the interplay between these phenomena and better exploit the available data. In the first part of the thesis we present a simplified fluid-structure interaction model that includes autoregulation. A layer of fibers in the vessel wall models the smooth muscle cells that regulate the diameter of the vessel. The model is applied to a 3D image-based network of retinal arterioles. In the second part, we propose a multi-compartments model of the eye. We use the equations of poroelasticity to model the blood flow in the choroid. The model includes other compartments that transmit the pulsatility from the choroid to the anterior chamber, where the measurements of the IOP are actually performed. We present some preliminary results on the choroid, the aqueous humor and on the choroid coupled with the vitreous. Finally, we present a reduced order modelling technique to speed up multiphysics simulations. We use high fidelity models for the compartments of particular interest from the modelling point of view. The other compartments are instead replaced by a reduced representation of the corresponding Steklov-Poincaré operator.
|
2 |
Méthodes de décomposition de domaine espace-temps pour la formulation mixte de problèmes d'écoulement et de transport en milieu poreuxHoang, Thi Thao Phuong 11 December 2013 (has links) (PDF)
Cette thèse présente une contribution aux développements de méthodes numériques pour la simulation d'écoulements en milieu poreux, en particulier par des méthodes de décomposition de domaine espace--temps qui permettent l'utilisation de pas de temps différents dans les différents sous--domaines. Nous étudions deux types de méthodes: la première est basée sur une généralisation de l'opérateur de Steklov-Poincaré au cas de problèmes dépendants du temps, et la seconde est basée sur la méthode de Relaxation d'Onde Optimisée de Schwarz (OSWR) dans laquelle des conditions de transmission plus générales (Robin ou Ventcell) sont utilisées pour accélérer la convergence de l'algorithme. Ces deux méthodes sont étudiées sur une formulation mixte qui est bien adaptée à la modélisation de l'écoulement et du transport en milieu poreux. Nous considérons tout d'abord un problème de diffusion et formulons, pour chaque méthode, un problème sur l'interface espace -temps entre les sous-domaines. Le caractère bien posé de ces problèmes, avec des conditions aux limites de Dirichlet ou de Robin, est démontré. Les preuves de convergence de l'algorithme OSWR et de sa version semi-discrète sous forme mixte sont également données. Des expériences numériques sont menées en 2D pour comparer les performances des deux méthodes sur des problèmes fortement hétérogènes, et un préconditionneur de Neumann--Neumann dépendant du temps permet d'accélérer la première méthode. Les deux méthodes sont ensuite étendues au cas d'une équation d'advection-diffusion, l'advection et la diffusion étant traitées séparément grâce une technique de séparation d'opérateurs, ce qui permet d'utiliser des pas de temps différents pour les deux phénomènes dans chaque sous-domaine. Des conditions de transmission sont proposées séparément pour l'advection et pour la diffusion. La convergence des méthodes est étudiée sur des exemples numériques, pour des problèmes en régime d'advection dominante ou de diffusion dominante, et leur précision en temps est étudiée dans le cas de grilles non-conformes en temps. Deux exemples inspirés de la simulation du stockage de déchets nucléaires sont étudiés, et la simulation sur des temps longs est réalisée par l'intermédiaire de fenêtres en temps. Nous considérons également la méthode OSWR avec des conditions de transmission de Ventcell, étendues à la formulation mixte. Nous démontrons que les problèmes de sous--domaine avec des conditions aux limites de Ventcell sont bien posés. Nous comparons les performances des paramètres optimisés pour Ventcell et Robin dans le cas de problèmes hétérogènes pour une décomposition en deux sous-domaines. Enfin, nous étudions l'extension des deux méthodes au cas où l'interface représente une fracture pour un modèle réduit d'écoulement dans un milieu poreux fracturé.
|
Page generated in 0.0696 seconds