• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 2
  • Tagged with
  • 26
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Homotopy sheaves on manifolds and applications to spaces of smooth embeddings

Boavida de Brito, Pedro January 2014 (has links)
This thesis explores connections between homotopy sheaves, manifold calculus of functors and operad theory. We argue that there is a deep overlap between these, and as evidence we give a new operadic description of the homotopy theoretical obstructions to deforming a smooth immersion into a smooth embedding. We then discuss an application which improves on some aspects of recent results of Arone-Turchin and Dwyer-Hess concerning spaces of long knots and high-dimensional variants. Along the way, we define fibrewise complete Segal spaces, a mild generalisation of Rezk's notion of complete Segal spaces. Also in the context of Segal spaces, we define right fibrations and prove a Grothendieck construction theorem for presheaves with values in spaces. Finally, we prove a result of independent interest which states that weakly k-reduced operads (those with contractible space of operations in arity j ? k) can be strictified when k = 0, 1.
12

Combinatoire algébrique des permutations et de leurs généralisations / Algebraic combinatorics of permutations and their generalisations

Vong, Vincent 08 December 2014 (has links)
Cette thèse se situe au carrefour de la combinatoire et de l'algèbre. Elle se consacre d'une part à traduire des problèmes algébriques en des problèmes combinatoires, et inversement, utilise le formalisme algébrique pour traiter des questions combinatoires. Après un rappel des notions classiques de combinatoire et d'algèbres de Hopfavec quelques applications, nous abordons l'étude de certaines statistiques définies sur les permutations : les pics, les vallées, les doubles montées et les doubles descentes, qui sont à la base de la bijection de Françon-Viennot, elle-même débouchant sur une étude combinatoire des polynômes orthogonaux. Nous montrons qu'à partir de ces statistiques, il est possible de construire diverses sous-algèbres ou algèbres quotients de FQSym, une algèbre dont une base est indexée par les permutations. Puis, nous étudions deux suites classiques de combinatoire par une démarche non commutative : les polynômes de Gandhi, un raffinement polynomial des nombres de Genocchi, et les nombres d'Euler, une suite recelant de nombreuses propriétés combinatoires. Nous nous attachons à montrer que l'approche non commutative permet, dans la majeure partie des cas, d'obtenir de manière directe des interprétations d'identités combinatoires. Enfin, inversement, certaines questions de nature algébrique peuvent être abordées d'un point de vue combinatoire. Ainsi, à travers l'étude des algèbres dendriformes, des algèbres tridendriformes, et des quadrialgèbres, nous prouvons des questions de liberté à propos de ces algèbres grâce à la combinatoire des arbres étiquetés / This thesis is at the crossroads between combinatorics and algebra. It studies some algebraic problems from a combinatorial point of view, and conversely, some combinatorial problems have an algebraic approach which enables us tosolve them. In the first part, some classical statistics on permutations are studied: the peaks, the valleys, the double rises, and the double descents. We show that we can build sub algebras and quotients of FQSym, an algebra which basis is indexed by permutations. Then, we study classical combinatorial sequences such as Gandhi polynomials, refinements of Genocchi numbers, and Euler numbers in a non commutative way. In particular, we see that combinatorial interpretations arise naturally from the non commutative approach. Finally, we solve some freeness problems about dendriform algebras, tridendriform algebras and quadrialgebras thanks to combinatorics of some labelled trees
13

A homotopical description of Deligne–Mumford compactifications

Deshmukh, Yash Uday January 2023 (has links)
In this thesis I will give a description of the Deligne–Mumford properad expressing it as the result of homotopically trivializing S¹ families of annuli (with appropriate compatibility conditions) in the properad of smooth Riemann surfaces with parameterized boundaries. This gives an analog of the results of Drummond-Cole and Oancea–Vaintrob in the setting of properads. We also discuss a variation of this trivialization which gives rise to a new partial compactification of Riemann surfaces relevant to the study of operations on symplectic cohomology.
14

Deformation complexes of algebraic operads and their applications

Paljug, Brian January 2015 (has links)
Given a reduced cooperad C, we consider the 2-colored operad Cyl(C) which governs diagrams U: V -> W, where V, W are Cobar(C)-algebras, and U is an infinity-morphism. We then investigate the deformation complexes of Cyl(C) and Cobar(C). Our main result is that the restriction maps between between the deformation complexes Der'(Cyl(C)) and Der'(Cobar(C)) are homotopic quasi-isomorphisms of filtered Lie algebras. We show how this result may be applied to modifying diagrams of homotopy algebras by derived automorphism. We then recall that Tamarkin's construction gives us a map from the set of Drinfeld associators to the homotopy classes of Lie infinity quasi-isomorphisms for Hochschild cochains of a polynomial algebra. Due to results of V. Drinfeld and T. Willwacher, both the source and the target of this map are equipped with natural actions of the Grothendieck-Teichmueller group GRT. We use our earlier results to prove that this map from the set of Drinfeld associators to the set of homotopy classes of Lie infinity quasi-isomorphisms for Hochschild cochains is GRT-equivariant. / Mathematics
15

A Plethysm Formulation for Operadic Structures and its Relationship to the Plus Construction

Michael Monaco (18429858) 25 April 2024 (has links)
<p dir="ltr">We first introduce several families of monoidal categories with plethysm products as their monoidal products and use this to describe operadic structures as plethysm monoids. In order to link this approach with the classical theory, we give a generalization of the Baez-Dolan plus construction. We then show that an operadic structure can be defined as a plethysm monoid if its associated Feynman category is a plus construction of a unique factorization category.</p>
16

Symmetric Homotopy Theory for Operads and Weak Lie 3-Algebras

Dehling, Malte 16 November 2020 (has links)
No description available.
17

Algebry nad operádami a properádami / Algebras over operads and properads

Peksová, Lada January 2016 (has links)
Operads are objects that model operations with several inputs and one output. We define such structures in the context of graphs, namely oriented trees. Then we generalize operads to properads and modular operads by taking general graphs with, or without, orientation. Further we construct the cobar complex of operads and properads and illustrate the construction on the examples of the associative operad Ass and the Frobenius properad Frob. Algebras over the cobar complex of operads correspond to certain homotopy algebras, for our example of Ass it is A1. We find its Maurer-Cartan equation and convert it from coderivations to derivations. Similarly we find the Maurer-Cartan equation for cobar complex of Frobenius properad. Powered by TCPDF (www.tcpdf.org)
18

On Operads / Über Operaden

Brinkmeier, Michael 18 May 2001 (has links)
This Thesis consists of four independent parts. In the first part I prove that the delooping, i.e.the classifying space, of a grouplike monoid is an $H$-space if and only if its multiplication is a homotopy homomorphism. This is an extension and clarification of a result of Sugawara. Furthermore I prove that the Moore loop space functor and the construction of the classifying space induce an adjunction on the corresponding homotopy categories. In the second part I extend a result of G. Dunn, by proving that the tensorproduct $C_{n_1}\otimes\dots \otimes C_{n_j}$ of little cube operads is a topologically equivalent suboperad of $C_{n_1 \dots n_j}$. In the third part I describe operads as algebras over a certain colored operad. By application of results of Boardman and Vogt I describe a model of the homotopy category of topological operads and algebras over them, as well as a notion of lax operads, i.e. operads whose axioms are weakened up to coherent homotopies. Here the W-construction, a functorial cofibrant replacement for a topological operad, plays a central role. As one application I construct a model for the homotopy category of topological categories. C. Berger claimed to have constructed an operad structure on the permutohedras, whose associated monad is exactly the Milgram-construction of the free two-fold loop space. In the fourth part I prove that this statement is not correct.
19

Linéarisation de structures algébriques à l'aide d'opérades et de foncteurs polynomiaux : Les équivalences quadratiques et la formule de Baker-Campbell-Hausdorff pour les variétés 2-nilpotentes / Linearization of algebraic structures with operads and polynomial functors : Quadratic equivalences and the Baker-Campbell-Hausdorff formula for 2-step nilpotent varieties

Defourneau, Thibault 25 August 2017 (has links)
Le travail de thèse contribue à établir des liens entre structures algébriques non-linéaires, décrites par des théories algébriques, et des structures algébriques linéaires, encodées par des algèbres sur une opérade linéaire. Pour les théories algébriques dont les modèles forment une catégorie semi-abélienne (ce qui inclut la plupart des structures intéressantes), un tel lien a été exhibé récemment par M. Hartl, au niveau des objets gradués associés à une nouvelle notion de suite centrale descendante des modèles d'une théorie donnée : il s'avère qu'ils ont une structure naturelle d'algèbre graduée sur une certaine opérade de groupes abéliens associée à la théorie. Le sujet de thèse s'inscrit dans le projet d'étendre ce lien au niveau global, c'est-à-dire d'établir des correspondances du type Mal'cev et Lazard dans le cas des groupes, à savoir entre les modèles nilpotents suffisamment radicables et les algèbres nilpotentes sur l'opérade linéaire correspondante (après tensorisation avec un sous-anneau des rationnels approprié). Ces correspondances jouent un rôle fondamental en théorie des groupes et commencent à faire leurs preuves en théorie des loops grâce au développement plus récent d'une théorie de Lie non-associative; on peut s'attendre à ce qu'il en soit de même dans un contexte plus général. Il est important de noter qu'aussi bien dans les correspondances classiques de Mal'cev et Lazard que dans leurs généralisations à des variétés multiples de loops (Moufang, Bruck, Bol etc.), le passage des algèbres (de Lie, de Mal'cev etc.) appropriées aux objets non-linéaires (groupes, voire loops) qui leur correspondent, est donné par une formule de Baker-Campbell-Hausdorff appropriée, déduite d'une étude de fonctions exponentielles et logarithmes. Dans la thèse, une nouvelle approche est développée pour construire une correspondance (en fait, une équivalence de catégories) du type Lazard entre une variété (dite aussi catégorie algébrique) 2- nilpotente 2-radicable (dans un sens approprié) C donnée et les algèbres sur une opérade symétrique unitaire linéaire et 2-nilpotente AbOp(C) dépendant de la variété, vivant dans la catégorie monoïdale des Z[1/2]-modules à gauche. L'anneau de fraction Z[1/2] apparaît car notre définition de 2-divisibilité d'objets de C se traduit par la condition de 2-divisibilité classique sur le premier terme de l'opérade. L'équivalence de type Lazard se construit grâce à la théorie des foncteurs polynomiaux (plus précisément quadratiques) et à la notion d'extension linéaire de catégories. L'idée principale est de chercher une équivalence quadratique (i.e un foncteur quadratique qui est une équivalence de catégories) entre une variété semi-abélienne 2-nilpotente 2-radicable donnée C et la catégorie des algèbres sur AbOp(C), que nous appellerons le foncteur de Lazard. La nouveauté principale de cette approche est de ne pas construire ce foncteur explicitement sur tous les objets et les morphismes, en utilisant une formule de BCH établie au préalable; mais au contraire de construire l'"ADN" du foncteur de Lazard, c'est-à-dire un ensemble de données minimales le caractérisant étudié dans ce travail de thèse, et d'en déduire une formule de type BCH dans notre contexte. Cette démarche devrait pouvoir se généraliser et ainsi fournir une approche nouvelle et intéressante même de la formule BCH classique. / The aim of this work consists of establishing the foundations and first steps of a research project which aims at a new understanding and generalization of the classical Baker-Campbell-Hausdorff formula with a conceptual approach, and its main application in group theory: refining a result of Mal'cev adapting the classical Lie correspondence to abstract groups, Lazard proved that the category of n-divisible n-step nilpotent groups is equivalent with the category of n-step nilpotent Lie algebras over the coefficient ring Z[1/2,…,1/n]. Generalizations to other algebraic structures than groups were obtained in the literature first for several varieties of loops (in particular Moufang, Bruck and Bol loops), and finally for all loops in recent work of Mostovoy, Pérez-Izquierdo and Shestakov. They invoke other types of algebras replacing Lie algebras in the respective context, namely Mal'cev algebras related with Moufang loops, Lie triple systems related with Bruck loops, Bol algebras with Bol algebras and finally Sabinin algebras with arbitrary loops. In each case, the associated type of algebras can be viewed as a linearization of the non-linear structure given by a given type of loops. This situation motivates a research program initiated by M. Hartl, namely of exhibiting suitable linearizations of all non-linear algebraic structures satisfying suitable conditions, namely all semiabelian varieties (of universal algebras, in the sense of universal algebra or of Lawvere). In fact, Hartl associated with any semi-abelian category C a multi-right exact (and hence multi-linear) functor operad on its abelian core. In the special case where C is a variety, this functor operad is even multicolimit preserving and by specialization is equivalent with an operad in abelian groups; the algebra type encoded by this operad provides a linearization of the given variety. Indeed, for each of the above-mentioned varieties of loops this algebra type coincides (over rational coefficients) with the one exhibited in the literature. These constructions and results are based on a new commutator theory in semi-abelian categories which itself relies on a calculus of functors in the framework of semi-abelian categories, both developed by Hartl in partial collaboration with B. Loiseau and T. Van der Linden. Now the project mentioned at the beginning constitutes the next major goal in this emerging general theory of linearization of algebraic structures: to generalize the Lazard equivalence and Baker- Campbell-Hausdorff formula to the context of semi-abelian varieties, and to deduce a way of explicitly computing the operad AbOp(C) from a given presentation of the variety C (more precisely, the operad obtained from AbOp(C) by tensoring its term of arity n with Z[1/2,…,1/n]). In the classical example of groups this would amount to deducing the structure of the Lie operad directly from the usual group axioms.
20

Hopf Invariants in Real and Rational Homotopy Theory

Wierstra, Felix January 2017 (has links)
In this thesis we use the theory of algebraic operads to define a complete invariant of real and rational homotopy classes of maps of topological spaces and manifolds. More precisely let f,g : M -&gt; N be two smooth maps between manifolds M and N. To construct the invariant, we define a homotopy Lie structure on the space of linear maps between the homology of M and the homotopy groups of N, and a map mc from the set of based maps from M to N, to the set of Maurer-Cartan elements in the convolution algebra between the homology and homotopy. Then we show that the maps f and g are real (rational) homotopic if and only if mc(f) is gauge equivalent to mc(g), in this homotopy Lie convolution algebra. In the last part we show that in the real case, the map mc can be computed by integrating certain differential forms over certain subspaces of M. We also give a method to determine in certain cases, if the Maurer-Cartan elements mc(f) and mc(g) are gauge equivalent or not. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 3: Manuscript.</p>

Page generated in 0.0268 seconds