• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 65
  • 55
  • 16
  • 16
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 440
  • 440
  • 236
  • 230
  • 105
  • 83
  • 77
  • 72
  • 62
  • 56
  • 54
  • 54
  • 51
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Porting a Real-Time Operating System to a Multicore Platform

Sjöström Thames, Sixten January 2012 (has links)
This thesis is part of the European MANY project. The goal of MANY is to provide developers with tools to develop software for multi and many-core hardware platforms. This is the first thesis that is part of MANY at Enea. The thesis aims to provide a knowledge base about software on many-core at the Enea student research group. More than just providing a knowledge base, a part of the thesis is also to port Enea's operating system OSE to Tilera's many-core processor TILEpro64. The thesis shall also investigate the memory hierarchy and interconnection network of the Tilera processor. The knowledge base about software on many-core was constrained to investigating the shared memory model and operating systems for many-core. This was achieved by investigating prominent academic research about operating systems for many-core processors. The conclusion was that a shared memory model does not scale and for the operating system case, operating systems shall be designed with scalability as one of the most important requirements. This thesis has implemented the hardware abstraction layer required to execute a single-core version of OSE on the TILEpro architecture. This was done in three steps. The Tilera hardware and the OSE software platform were investigated. After that, an OSE target port was chosen as reference architecture. Finally, the hardware dependent parts of the reference software were modified. A foundation has been made for future development.
262

KernTune: self-tuning Linux kernel performance using support vector machines

Yi, Long January 2006 (has links)
Magister Scientiae - MSc / Self-tuning has been an elusive goal for operating systems and is becoming a pressing issue for modern operating systems. Well-trained system administrators are able to tune an operating system to achieve better system performance for a specific system class. Unfortunately, the system class can change when the running applications change. The model for self-tuning operating system is based on a monitor-classify-adjust loop. The idea of this loop is to continuously monitor certain performance metrics, and whenever these change, the system determines the new system class and dynamically adjusts tuning parameters for this new class. This thesis described KernTune, a prototype tool that identifies the system class and improves system performance automatically. A key aspect of KernTune is the notion of Artificial Intelligence oriented performance tuning. Its uses a support vector machine to identify the system class, and tunes the operating system for that specific system class. This thesis presented design and implementation details for KernTune. It showed how KernTune identifies a system class and tunes the operating system for improved performance. / South Africa
263

Experiments With Unix Process Schedulers

Jayakumar, S 06 1900 (has links) (PDF)
No description available.
264

Group-EDF: A New Approach and an Efficient Non-Preemptive Algorithm for Soft Real-Time Systems

Li, Wenming 08 1900 (has links)
Hard real-time systems in robotics, space and military missions, and control devices are specified with stringent and critical time constraints. On the other hand, soft real-time applications arising from multimedia, telecommunications, Internet web services, and games are specified with more lenient constraints. Real-time systems can also be distinguished in terms of their implementation into preemptive and non-preemptive systems. In preemptive systems, tasks are often preempted by higher priority tasks. Non-preemptive systems are gaining interest for implementing soft-real applications on multithreaded platforms. In this dissertation, I propose a new algorithm that uses a two-level scheduling strategy for scheduling non-preemptive soft real-time tasks. Our goal is to improve the success ratios of the well-known earliest deadline first (EDF) approach when the load on the system is very high and to improve the overall performance in both underloaded and overloaded conditions. Our approach, known as group-EDF (gEDF), is based on dynamic grouping of tasks with deadlines that are very close to each other, and using a shortest job first (SJF) technique to schedule tasks within the group. I believe that grouping tasks dynamically with similar deadlines and utilizing secondary criteria, such as minimizing the total execution time can lead to new and more efficient real-time scheduling algorithms. I present results comparing gEDF with other real-time algorithms including, EDF, best-effort, and guarantee scheme, by using randomly generated tasks with varying execution times, release times, deadlines and tolerances to missing deadlines, under varying workloads. Furthermore, I implemented the gEDF algorithm in the Linux kernel and evaluated gEDF for scheduling real applications.
265

A New Wireless Sensor Node Design for Program Isolation and Power Flexibility

Skelton, Adam W. 12 1900 (has links)
Over-the-air programming systems for wireless sensor networks have drawbacks that stem from fundamental limitations in the hardware used in current sensor nodes. Also, advances in technology make it feasible to use capacitors as the sole energy storage mechanism for sensor nodes using energy harvesting, but most current designs require additional electronics. These two considerations led to the design of a new sensor node. A microcontroller was chosen that meets the Popek and Goldberg virtualization requirements. The hardware design for this new sensor node is presented, as well as a preliminary operating system. The prototypes are tested, and demonstrated to be sustainable with a capacitor and solar panel. The issue of capacitor leakage is considered and measured.
266

PolyFS Visualizer

Fallon, Paul Martin 01 June 2016 (has links)
One of the most important operating system topics, file systems, control how we store and access data and form a key point in a computer scientists understanding of the underlying mechanisms of a computer. However, file systems, with their abstract concepts and lack of concrete learning aids, is a confusing subjects for students. Historically at Cal Poly, the CPE 453 Introduction to Operating Systems has been on of the most failed classes in the computing majors, leading to the need for better teaching and learning tools. Tools allowing students to gain concrete examples of abstract concepts could be used to better prepare students for industry. The PolyFS Visualizer is a block level file system visualization service built for the PolyFS and TinyFS file systems design specifications currently used by some of professors teaching CPE 453. The service allows students to easily view the blocks of their file system and see metadata, the blocks binary content and the interlinked structure. Students can either compile their file system code with a provided block emulation library to build their disk on a remote server and make use of a visualization website or place the file mounted as their file system directly into the visualization service to view it locally. This allows students to easily view, debug and explore their implementation of a file system to understand how different design decisions affect its operation. The implementation includes three main components: a disk emulation library in C for compilation with students code, a node JS back-end to handle students file systems and block operations and a read only visualization service. We have conducted two surveys of students in order to determine the usefulness of the PolyFS Visualizer. Students responded that the use of the PolyFS visualizer helps with the PolyFS file system design project and has several ideas for future features and expansions.
267

Podpora GSM alarmu na mobilním zařízení / GSM Alarm Support on Mobile Device

Kalus, Jiří January 2011 (has links)
This master's thesis describes the mobile application that provides the support to control the GSM/GPS alarms. Based on the possibilities of modern security equipment and mobile devices, the application adds new functionality for these alarms. This work mainly describes selecting the appropriate mobile platform, application designs and the independence on the specific alarm. In conclusion, the results and possible extension of the application are talked over.
268

A Functional Approach to Memory-Safe Operating Systems

Leslie, Rebekah 01 January 2011 (has links)
Purely functional languages--with static type systems and dynamic memory management using garbage collection--are a known tool for helping programmers to reduce the number of memory errors in programs. By using such languages, we can establish correctness properties relating to memory-safety through our choice of implementation language alone. Unfortunately, the language characteristics that make purely functional languages safe also make them more difficult to apply in a low-level domain like operating systems construction. The low-level features that support the kinds of hardware manipulations required by operating systems are not typically available in memory-safe languages with garbage collection. Those that are provided may have the ability to violate memory- and type-safety, destroying the guarantees that motivate using such languages in the first place. This work demonstrates that it is possible to bridge the gap between the requirements of operating system implementations and the features of purely functional languages without sacrificing type- and memory-safety. In particular, we show that this can be achieved by isolating the potentially unsafe memory operations required by operating systems in an abstraction layer that is well integrated with a purely functional language. The salient features of this abstraction layer are that the operations it exposes are memory-safe and yet sufficiently expressive to support the implementation of realistic operating systems. The abstraction layer enables systems programmers to perform all of the low-level tasks necessary in an OS implementation, such as manipulating an MMU and executing user-level programs, without compromising the static memory-safety guarantees of programming in a purely functional language. A specific contribution of this work is an analysis of memory-safety for the abstraction layer by formalizing a meaning for memory-safety in the presence of virtual-memory using a novel application of noninterference security policies. In addition, we evaluate the expressiveness of the abstraction layer by implementing the L4 microkernel API, which has a flexible set of virtual memory management operations.
269

Popcorn Linux: enabling efficient inter-core communication in a Linux-based multikernel operating system

Shelton, Benjamin H. 31 May 2013 (has links)
As manufacturers introduce new machines with more cores, more NUMA-like architectures, and more tightly integrated heterogeneous processors, the traditional abstraction of a monolithic OS running on a SMP system is encountering new challenges.  One proposed path forward is the multikernel operating system.  Previous efforts have shown promising results both in scalability and in support for heterogeneity.  However, one effort\'s source code is not freely available (FOS), and the other effort is not self-hosting and does not support a majority of existing applications (Barrelfish). In this thesis, we present Popcorn, a Linux-based multikernel operating system.  While Popcorn was a group effort, the boot layer code and the memory partitioning code are the author\'s work, and we present them in detail here.  To our knowledge, we are the first to support multiple instances of the Linux kernel on a 64-bit x86 machine and to support more than 4 kernels running simultaneously. We demonstrate that existing subsystems within Linux can be leveraged to meet the design goals of a multikernel OS.  Taking this approach, we developed a fast inter-kernel network driver and messaging layer.  We demonstrate that the network driver can share a 1 Gbit/s link without degraded performance and that in combination with guest kernels, it meets or exceeds the performance of SMP Linux with an event-based web server.  We evaluate the messaging layer with microbenchmarks and conclude that it performs well given the limitations of current x86-64 hardware.  Finally, we use the messaging layer to provide live process migration between cores. / Master of Science
270

Programming the INTEL 8086 microprocessor for GRADS : a graphic real-time animation display system

Haag, Roger. January 1985 (has links)
No description available.

Page generated in 0.1088 seconds