• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 24
  • 8
  • 8
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 51
  • 50
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metodología para el diseño y construcción de un lexicón de opinión, basado en comentarios de Twitter aplicado al proyecto "OpinionZoom"

Hernández Muñoz, Natalia Paola January 2016 (has links)
Ingeniera Civil Industrial / El presente trabajo tiene como objetivo diseñar y construir una metodología para la creación de un lexicón de opinión en el que se identifique su polaridad, considerando las características del español de Chile y basado en comentarios de Twitter, aplicado al proyecto OpinionZoom . Es desarrollado dentro del proyecto OpinionZoom, plataforma de análisis de sentimientos e ironía a partir de la información textual en redes sociales para la caracterización de la demanda de productos y servicios , donde se presenta la problemática de no tener un lexicón de opinión apropiado para el análisis de sentimientos que se realiza. La hipótesis de investigación de este trabajo postula que la construcción de un lexicón de opinión que considere las particularidades del español de Chile en Twitter mejora el desempeño de la herramienta OpinionZoom . Para comprobar esta hipótesis se ha utilizado una metodología basada en un corpus lingüístico para la generación de un lexicón de opinión. Se construyó un corpus de tweets clasificados en positivos y negativos según los emoticones que presentan, luego se utilizó este corpus en la construcción del lexicón, utilizando la frecuencia de las palabras presentes en comentarios positivos y negativos y calculando su polaridad en base a la información mutua que se tiene, empleando el cálculo de PMI. Para la validación del lexicón de opinión se midió el desempeño del sistema de análisis de opiniones con el lexicón de opinión actual, que presenta licencia sólo de uso académico, y con el lexicón de opinión construido en este trabajo. Comparando ambos desempeños, se observaron mejoras en cuanto a exactitud, precisión y exhaustividad para el sistema con el lexicón construido, por lo que la hipótesis planteada en este trabajo se comprueba. En conclusión, la utilización de un lexicón de opinión que considere las características del español de Chile mejora el desempeño del sistema de análisis de opiniones de OpinionZoom , la utilización de emoticones para identificar la polaridad representa un indicador representativo en comentarios de Twitter, por lo que se puede ampliar la investigación utilizando emojis para la identificación de polaridad.
2

Unsupervised Aspect Discovery from Online Consumer Reviews

Suleman, Kaheer 18 March 2104 (has links)
The success of on-line review websites has led to an overwhelming number of on-line consumer reviews. These reviews have become an important tool for consumers when making a decision to purchase a product. This growth has led to the need for applications that enable this information to be presented in a way that is meaningful. These applications often rely on domain specific semantic lexicons which are both expensive and time consuming to make. The following thesis proposes an unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two step hierarchical clustering process in which we first cluster based on the semantic similarity of the contexts of terms and then on the similarity of the hypernyms of the cluster members. The method also includes a process for assigning class labels to each of the clusters. Finally an experiment showing how the proposed methods can be used to measure aspect based sentiment is performed. The methods proposed in this thesis are evaluated on a set of 157,865 reviews from a major commercial website and found that the two-step clustering process increases cluster F-scores over a single round of clustering. Finally, the proposed methods are compared to a state of the art topic modelling approach by Titov and McDonald (2008).
3

Análisis de sentimientos y predicción de eventos en twitter

Montesinos García, Lucas January 2014 (has links)
Ingeniero Civil Eléctrico / El análisis de sentimientos o sentiment analysis es el estudio por el cual se determina la opinión de las personas en Internet sobre algún tema en específico, prediciendo la polaridad de los usuarios (a favor, en contra, neutro, etc), abarcando temas que van desde productos, películas, servicios a intereses socio-culturales como elecciones, guerras, fútbol, etc. En el caso particular de esta memoria, se estudian los principales métodos usados en la literatura para realizar un análisis de sentimientos y se desarrolla un caso empleando parte de estas técnicas con sus respectivos resultados. La plataforma escogida fue Twitter, debido a su alto uso en Chile y el caso de estudio trata acerca de las elecciones presidenciales primarias realizadas en la Alianza por Chile entre los candidatos Andrés Allamand de Renovación Nacional (RN) y Pablo Longueira del partido Unión Demócrata Independiente (UDI). De esta forma, se busca predecir los resultados de las primarias, identificando la gente que está a favor de Allamand y la gente que apoya a Longueira. De igual manera, se busca identificar a los usuarios que están en contra de uno o ambos candidatos. Para predecir la opinión de los usuarios se diseñó un diccionario con palabras positivas y negativas con un puntaje asociado, de manera que al encontrar estos términos en los tweets se determina la polaridad del mensaje pudiendo ser positiva, neutra o negativa. El Algoritmo diseñado tiene un acierto cercano al 60% al ocupar las 3 categorías, mientras que si sólo se ocupa para determinar mensajes positivos y negativos la precisión llega a un 74%. Una vez catalogados los tweets se les asigna el puntaje a sus respectivos usuarios de manera de sumar estos valores a aquellas cuentas que tengan más de un tweet, para luego poder predecir el resultado de las elecciones por usuario. Finalmente, el algoritmo propuesto determina como ganador a Pablo Longueira (UDI) por sobre Andrés Allamand (RN) con un 53% de preferencia mientras que en las elecciones en urnas realizadas en Julio de 2013 en Chile el resultado fue de un 51% sobre 49% a favor de Longueira, lo cual da un error de un 2%, lo que implica que el análisis realizado fue capaz de predecir, con un cierto margen de error, lo que sucedió en las elecciones. Como trabajo futuro se plantea usar el diccionario y algoritmo diseñados para realizar un análisis de sentimientos en otro tema de interés y comprobar su efectividad para diferentes casos y plataformas.
4

Predicting Satisfaction in Customer Support Chat : Opinion Mining as a Binary Classification Problem

Hedlund, Henrik January 2016 (has links)
The study explores binary classification with Support Vector Machines as means to predict a satisfaction score based on customer surveys in the customer supportdomain. Standard feature selection methods and their impact on results are evaluated and a feature scoring metric Log Odds Ratio is implemented for addressingasymmetrical class distributions. Results show that the feature selection andscoring methods implemented improve performance significantly. Results alsoshow that it is possible to get decent predictive values on test data based onlimited amount of training observations. However mixed results are presentedin a real-world application example as a there is a significant error rate fordiscriminating the minority class. We also show the negative effects of usingcommon metrics such as accuracy and f-measure for optimizing models whendealing with high-skew data in a classification context.
5

Linking Arabic social media based on similarity and sentiment

Alhazmi, Samah January 2016 (has links)
A large proportion of World Wide Web (WWW) users treat it as a social medium, i.e. many of them use the WWW to express and communicate their opinions. Economic value or utility can be created if these utterances, reactions, or feedback are extracted from various social media platforms and their content analysed. Some of these benefits are related to e-commerce, marketing, product improvements, improving machine learning algorithms etc. Moreover, establishing links between different social media platforms, based on shared topics and content, could provide access to the comments of users of different platforms. However, studies to date have generally tackled the area of content extraction from each type of social media in isolation. There is a lack of research of some aspects of social media, namely, linking the references from a blog post, for example, to information related to the same issue on Twitter. In addition, while studies have been carried out on various languages, there has been little investigation into social media in the Arabic language. This thesis tackles opinion mining and sentiment analysis of Arabic language social media, particularly in blogs and Twitter. The thesis focuses on Arabic language technology blogs in order to identify the expressed sentiments and then to link an issue within a blog post to relevant tweets in Twitter. This was done by assessing the similarity of content and measuring the sentiments scores. In order to extract the required data, text-mining techniques were used to build up corpora of the raw blog data in Modern Standard Arabic (MSA) and to build tools and lexicons required for this research. The results obtained through this research contribute to the field of computer science by furthering the employment of text-mining techniques, thus improving the process of information retrieval and knowledge accumulation. Moreover, the study developed new approaches to working with Arabic opinion mining and the domain of sentiment analysis.
6

Γλωσσολογικές πηγές για τεχνικές εξόρυξης γνώμης (opinion mining) προσαρμοσμένες στις ιδιαιτερότητες της Νέας Ελληνικής

Δεμπέλης, Νικόλαος 15 December 2014 (has links)
Η έρευνα στην παρούσα εργασία εστιάζει στην εξόρυξη γνώμης/ συναισθήματος. Στόχος είναι η θεωρητική μελέτη των γλωσσολογικών τεχνικών και πόρων που χρησιμοποιούνται στη διαδικασία της εξόρυξη γνώμης/ συναισθήματος και η υλοποίηση μέρους ενός συστήματος για την δημιουργία ενός τέτοιου γλωσσολογικού πόρου. Η εφαρμογή που αναπτύχθηκε στα πλαίσια της εργασίας επιτρέπει στους χρήστες να «ψηφίζουν» για την πολικότητα επιθέτων (αν το επίθετο έχει θετική, αρνητική ή ουδέτερη έννοια) της ελληνικής γλώσσας σε μια 5-βάθμια κλίμακα (από -2 έως 2). / This essay focuses on opinion/sentiment mining. It aims in a theoretical study of computational linguistic means and techniques that are used in the process of opinion/sentiment mining and in the development of a part of a system to implement such a linguistic mean. The application developed in the frame of this essay allows users to vote in a 5-scale (from -2 to 2) the polarity (positive, negative, neutral) of Greek adjectives.
7

Diseño, desarrollo e implementación de una aplicación de web opinion mining para identificar el sentimiento de usuarios de Twitter con respecto a una compañia de retail

Balazs Thenot, Jorge-Andrés Jean-Michel January 2015 (has links)
Ingeniero Civil Industrial / Los contenidos disponibles en la Web están creciendo a velocidades que hacen que la tarea de analizarlos sea humanamente imposible. Una de las disciplinas que hace frente a este problema es la Minería de Opiniones, también conocida como el Análisis de Sentimientos, responsable de procesar texto automáticamente, con el fin de extraer y analizar las opiniones que contiene para generar información valiosa y accionable. El objetivo principal de este trabajo es crear una aplicación de Minería de Opiniones capaz de explotar tweets en español que mencionen a la empresa de retail Falabella. En primer lugar, se investigó el impacto que las redes sociales tienen en Chile. En segundo lugar, se elaboró un estado del arte que englobara los últimos avances en Minería de Opiniones y en Procesamiento del Lenguaje Natural. En tercer lugar, se creó un Web Crawler capaz de obtener los tweets que mencionanaran a la compañía. Posteriormente se implementó varios algoritmos de Procesamiento del Lenguaje Natural para pre-procesar los tweets previamente mencionados, e incorporar los datos resultantes al proceso de extracción de opiniones. Este proceso se desarrolló como un enfoque de Minería de Opiniones no supervisado basado en lexicones, dependiente de un analizador de dependencias encargado de detectar ciertas estructuras gramaticales que permitieran identificar fenómenos linguísticos comunes, tales como la negación, intensificación, y oraciones subordinadas adversativas. La identificación de dichos fenómenos permitió mejorar la calidad de la clasificación. Finalmente se creó una página Web para mostrar los resultados que luego fueron utilizados para realizar un análisis exploratorio de la compañía. Adicionalmente, los algoritmos fueron validados con el corpus TASS, obteniendo valores-F de un 61,88% negativo y 71,88% positivo. A pesar de que el rendimiento de los algoritmos no fue tan alto como una aplicación en producción lo requeriría, se consideró lo suficientemente bueno como para realizar el análisis exploratorio. Con éste fue posible confirmar la intuición de que las cuentas corporativas suelen publicar contenido positivo, las cuentas de noticias contenido neutral, y los usuarios comunes contenido irrelevante o quejas. Además fue posible probar que los usuarios más activos frecuentemente publican contenido totalmente irrelevante. Por otra parte, se logró replicar varios resultados obtenidos por instituciones nacionales reconocidas, entre los cuales destaca el hecho que el momento más controversial del año para Falabella fue cuando se intentó llevar a cabo el Cyber Monday, período en el cual el sentimiento generalizado en Twitter alcanzó los niveles más negativos. Dicho todo esto, la aplicación desarrollada demostró ser útil al momento de utilizar una gran cantidad de datos para extraer información que podría ser potencialmente útil para la firma de retail. Finalmente, el desarrollo de la aplicación permitió crear un artículo que contuviera parte considerable del transfondo teórico en el cual ésta se basó, además de beneficiar a otros estudiantes en el desarrollo de sus memorias.
8

Identificación de la presencia de ironía en el texto generado por usuarios de Twitter utilizando técnicas de Opinion Mining y Machine Learning

Hernández Martínez, Víctor Alejandro January 2015 (has links)
Ingeniero Civil Industrial / El siguiente trabajo tiene como objetivo general dise~nar e implementar un módulo clasificador de texto que permita identificar la presencia de ironía en el contenido generado por usuarios de Twitter, mediante el uso de herramientas asociadas a Opinion Mining y Machine Learning. La ironía es un fenómeno que forma parte del contenido generado por las personas en la Web, y representa un campo de estudio nuevo que ha atraído la atención de algunos investigadores del área de Opinion Mining debido a su complejidad y al impacto que puede tener en el desempeño de las aplicaciones de Análisis de Sentimientos actuales. Este trabajo de título se desarrolla dentro del marco de OpinionZoom, proyecto CORFO código 13IDL2-23170 titulado "OpinionZoom: Plataforma de análisis de sentimientos e ironía a partir de la información textual en redes sociales para la caracterización de la demanda de productos y servicios" desarrollado en el Web Intelligence Centre del Departamento de Ingeniería Industrial de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, el cual busca generar un sistema avanzado para analizar datos extraídos desde redes sociales para obtener información relevante para las empresas en relación a sus productos y servicios. La hipótesis de investigación de este trabajo dice que es posible detectar la presencia de ironía en texto en idioma Español con cierto nivel de precisión, utilizando una adaptación de la metodología propuesta por Reyes et al. (2013) en [5] la cual involucra la construcción de un corpus en función de la estructura de Twitter junto con la capacidad de las personas para detectar ironía. El modelo utilizado se compone de 11 atributos entre los cuales se rescatan características sintácticas, semánticas y emocionales o psicológicas, con el objetivo de poder describir ironía en texto. Para esto, se genera un corpus de casos irónicos y no irónicos a partir de una selección semiautomática utilizando una serie de hashtags en Twitter, para luego validar su etiquetado utilizando evaluadores humanos. Además, esto se complementa con la inclusión de textos objetivos como parte del set de casos no irónicos. Luego, utilizando este corpus, se pretende realizar el entrenamiento de un algoritmo de aprendizaje supervisado para realizar la posterior clasificación de texto. Para ésto, se implementa un módulo de extracción de atributos que transforma cada texto en un vector representativo de los atributo. Finalmente, se utilizan los vectores obtenidos para implementar un módulo clasificador de texto, el cual permite realizar una clasificación entre tipos irónicos y no irónicos de texto. Para probar su desempe~no, se realizan dos pruebas. La primera utiliza como casos no irónicos los textos objetivos y la segunda utiliza como casos no irónicos aquellos textos evaluados por personas como tales. La primera obtuvo un alto nivel de precisión, mientras que la segunda fue insuficiente. En base a los resultados se concluye que esta implementación no es una solución absoluta. Existen algunas limitaciones asociadas a la construcción del corpus, las herramientas utilizadas e incluso el modelo, sin embargo, los resultados muestran que bajo ciertos escenarios de comparación, es posible detectar ironía en texto por lo que se cumple la hipótesis. Se sugiere ampliar la investigación, mejorar la obtención del corpus, utilizar herramientas más desarrolladas y analizar aquellos elementos que el modelo no puede capturar.
9

Diseño y construcción de un sistema web de análisis de opiniones en Twitter integrando algoritmos de data mining

Córdova Galleguillos, Andrés Alejandro January 2015 (has links)
Ingeniero Civil Industrial / El objetivo General de esta memoria de título es "Diseñar y Construir un prototipo funcional de sistema de análisis de opiniones en Twitter integrando algoritmos de Data Mining". Este trabajo se enmarca en el proyecto "OpinionZoom " Plataforma de análisis de sentimientos e ironía a partir de información textual en redes sociales para la caracterización de la demanda de productos y servicios". Este es un proyecto de I+D aplicada concursado por InnovaChile de CORFO dirigido por el Web Intelligence Centre (WIC) de la Universidad de Chile. Este proyecto intenta satisfacer una necesidad de las organizaciones; la de conocer mejor a su público demandante y a sus opiniones con respecto a la marca, los productos o servicios que ofrece, o sobre algún tópico en particular. Si bien es frecuente que se hagan estudios de mercado para intentar resolver estas inquietudes, éstos resultan caros y presentan sesgos de distintas clases. Por otro lado, existe mucho contenido en la Web generado por usuarios de diferentes servicios, y a cada minuto se agregan miles de gigabytes de este tipo de datos. Solo en Twitter, red social de microblogging, se generan aproximadamente 340.000 \textit{tweets} por minuto. Si se consideran las poderosas herramientas desarrolladas en el último tiempo en el campo de Data Mining, existe un gran costo de oportunidad al no aprovechar las información de primera fuente que se puede obtener de allí para responder a las búsquedas de las organizaciones. Esta memoria de título pretende comprobar que es posible crear un sistema de análisis de opiniones en Twitter integrando algoritmos de Data Mining que por separado detecten entre otras cosas la orientación sentimental de una opinión, la influencia de los usuarios de Twitter y los intereses de estos usuarios. La solución a implementar es un prototipo funcional que permite revisar y proyectar la funcionalidad de la aplicación final que tendrá el proyecto en cuestión. Una de las novedades de este trabajo es la construcción de un Data Warehouse para colectar las opiniones vertidas en Twitter y proveer de información útil para la gestión al usuario del sistema. Se logran los objetivos al diseñar y construir un sistema de análisis de opiniones en Twitter integrando algoritmos de Data Mining a nivel de prototipo, mostrando resultados coherentes y satisfactorios, que instan a nuevas mejoras con vistas a un producto final. Se valida de esta forma la hipótesis y se aporta con una novedosa aplicación de un Data Warehouse que ocupe los datos que gratuitamente otorga Twitter para la mejor gestión de productos y servicios de una organización.
10

A System Using Deep Learning and Fuzzy Logic to Detect Fake Yelp Reviews

Bai, Jun 30 May 2019 (has links)
No description available.

Page generated in 0.1128 seconds