• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High speed energy efficient incoherent optical wireless communications

Tsonev, Dobroslav Antonov January 2015 (has links)
The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM.
2

Electrochromic Properties of Iridium Oxide Based Thin Films

Backholm, Jonas January 2008 (has links)
Electrochromic iridium oxide (IrOx) and iridium-tantalum oxide (IrTaOx) thin films were prepared by reactive magnetron sputtering. Composition, density, and structure were determined using Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. The electronic density of states (DOS) and the solid phase chemical diffusion coefficient (D) were determined for hydrogen in IrOx and IrTaOx by potentiostatic intermittent titration technique (PITT), and electrochemical impedance spectroscopy (EIS). The complex refractive indices were determined for colored and bleached IrOx and IrTaOx by inverting transmission and reflectance, measured using spectrophotometry in the 300-2500 nm wavelength range. A very porous structure, with a stoichiometry of IrO2.2, was found for IrOx. It contained ~4 nm sized grains. The IrTaOx had a denser structure built up by ~4 nm sized grains. The composition of IrTaOx was found to vary on a nanometer scale, with an average composition of IrTa1.4O5.6. It was found that DOS can be measured using PITT and EIS in the presence of spontaneous side reactions, even for systems influenced by non-negligible charge transfer kinetics and Ohmic drops. It was found that the measured DOS is 30-50% of the theoretically calculated DOS and that D is in the 10-10 – 10-11 cm2/s range for both materials. The hydrogen diffusion mechanism was described by an anomalous diffusion model, possibly indicating percolation or diffusion paths described by a fractal network. The refractive indices were found to be ~1.3 and ~2 for IrOx and IrTaOx, respectively, and independent of coloration state, whereas the extinction coefficients were found to modulate by ~30% for IrOx and ~50% for IrTaOx, making IrTaOx more favorable for electrochromic applications. A modulation peak was found at ~660 nm for both IrOx and IrTaOx associated with the removal of intraband transitions within the Ir t2g band.
3

Modulation Formats For Wavelength Division Multiplexing (wdm) Systems

Buyuksahin Oncel, F. Feza 01 September 2009 (has links) (PDF)
Optical communication networks are becoming the backbone of both national and international telecommunication networks. With the progress of optical communication systems, and the constraints brought by WDM transmissions and increased bit rates, new ways to convert the binary data signal on the optical carrier have been proposed. There are different factors that should be considered for the right choice of modulation format, such as information spectral density (ISD), power margin, and tolerance against group-velocity dispersion (GVD) and against fiber nonlinear effects like self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing (FWM), and stimulated Raman scattering (SRS). In this dissertation, the several very important modulation formats such as Non Return to Zero (NRZ), Return to Zero (RZ), Chirped Return to Zero (CRZ), Carrier Suppressed Return to Zero (CSRZ), Differential Phase Shift Keying (PSK) and Carrier Suppressed Return to Zero- Differential Phase Shift Keying (CSRZ-DPSK) will be detailed and compared. In order to make performance analysis of such modulation formats, the simulation will be done by using VPItransmissionMakerTM WDM software.
4

Silicon nanomembranes for optical phased array (OPA) applications

Hosseini, Amir 04 November 2011 (has links)
Theory, design, fabrication and characterization of on-chip optical beam steering systems are presented in this dissertation. Silicon photonics is being considered for integration with conventional CMOS technology for large-band width and low loss on and off-chip communications. We choose silicon nanomembrane, or silicon-on-insulator (SOI) substrates for implementation of large-angle and agile beam steeres. While working on the targeted device, we contributed to the theory, modeling, engineering and implementation of different building blocks. Multimode-interference couplers (MMIs) constitute important parts of this dissertation. These devices are commonly used as on-chip beam splitters, optical switches and on-chip static phase shifters. The MMIs’ principles of operation are suited in more details and design rules are derived for the first time. MMI based beam splitters with number of outputs as large as 12 are fabricated and tested on SOI wafers. Traditionally, MMIs devices were designed by means of computationally expensive numerical simulations. Numerically and experimentally, we show that our analytical design rules make design of MMIs with low insertion loss and highly uniform outputs possible without additional optimization processes. Optical phased arrays include phase shifter blocks. In the first prototype, we use micro-heaters for tuning the optical phase. The bread-loafing effect, which is generally considered an undeniable phenomenon in the silicon industry, is engineered to realize a mechanical structure to efficiently direct heat toward the silicon waveguides. We also investigate slow light photonic crystal based delay lines to be used as phase shifters. An important drawback of such devices is the low coupling efficiency between slow-light photonic crystal waveguides and fast light strip waveguides. We numerically and experimentally investigate the coupling efficiency, and show for the first time that a few-period long fast-light photonic crystal waveguide without any group index tapering suffices for efficient coupling. The prototype is fabricated, packaged and tested and optical beam steering angle over ±30degrees is demonstrated. Finally, preliminary investigations for 3D implementation of the beam steerer system are presented to clarify the approaches to take for future works. / text
5

High capacity phase/amplitude modulated optical communication systems and nonlinear inter-channel impairments

Tavassoli, Vahid 17 April 2012 (has links)
This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems. / Graduate
6

The Applicability of 8-Hydroxypyrene-1,3,6-trisulfonic Acid to Spectroelectrochemical Sensing

Andrews, Ronnee Nickole 07 October 2009 (has links)
No description available.
7

Components based on optical fibers with internal electrodes

Myrén, Niklas January 2003 (has links)
<p>The topic of this thesis is development ofdevices fortelecom applications based on poled optical fibers. The focusis on two different specific functions, wavelength conversionand optical switching.</p><p>Optical switching is demonstrated in a poled optical fiberat telecom wavelengths (~1.55 mm). The fiber has two holesrunning along the core in which electrodes are inserted. Thefiber device is made electro-optically active with a polingprocess in which a strong electric field is recorded in thefiber at a temperature of 270 o C. The fiber is then put in onearm of a Mach-Zehnder interferometer and by applying a voltageacross the two electrodes in the fiber the refractive index ismodulated and the optical signal switched from one output portto the other. So far the lowest switching voltage achieved is~1600 V which is too high for a commercial device, but byoptimizing the design of the fiber and the poling process aswitching voltage as low as 50 V is aimed for.</p><p>A method to deposit a thin silver electrode inside the holesof an optical fiber is also demonstrated. A new way of creatingperiodic electrodes by periodically ablating the silver filmelectrode inside the holes of an optical fiber is also shown.The periodic electrodes can be used to create a quasi-phasematched (QPM) nonlinearity in the fiber which is useful forincreasing the efficiency of a nonlinear process such aswavelength conversion. Poling of a fiber with silver electrodesshowed a huge increase in the nonlinearity. This could be dueto a resonant enhancement caused by silver nanoclusters.</p><p><b>Keywords:</b>Poling, twinhole fiber, fiber electrodes,silver film electrodes, silver diffusion, quasi-phase matching,optical switching, frequency conversion, optical modulation</p>
8

Efficient Resonantly Enhanced Mach-Zehnder Optical Modulator on Lithium Niobate

Nguyen, Giang Thach, thach.nguyen@rmit.edu.au January 2006 (has links)
Photonic links have been proposed to transport radio frequency (RF) signals over optical fiber. External optical modulation is commonly used in high performance RF-photonic links. The practical use of optical fiber to transport RF signals is still limited due to high RF signal loss. In order to reduce the RF signal loss, highly efficient modulators are needed. For many applications, modulators with broad bandwidths are required. However, there are applications that require only a narrow bandwidth. For these narrow-band applications, the modulation efficiency can be improved through the resonant enhancement technique at the expense of reduced bandwidth. The aim of this thesis is to investigate highly efficient Mach-Zehnder optical modulators (MZMs) on Lithium Niobate (LiNbO3) with resonant enhancement techniques for narrow-band RF-photonic applications. This work focuses in particular on analyzing the factors that affect the modulation efficiency through resonant enhancement so that the modulator electrode structure can be optimized for maximum modulation efficiency. A parameter study of the effects of the electrode characteristics on the modulation efficiency of resonantly enhanced modulators (RE-MZM) is provided. From this study, optimum design objectives are identified. Numerical optimization is employed to explore the design trade-offs so that optimal configurations can be found. A sensitivity analysis is carried out to assess the performance of optimal RE-MZMs with respect to the variations of fabrication conditions. The results of these investigations indicate that the RE-MZM with a large electrode gap is the optimal design since it provides high modulation efficiency although the inherent switching voltage is high, and is the most tolerant to the fabrication fluctuations. A highly efficient RE-MZM on X-cut LiNbO3 is practically demonstrated with the resonant enhancement factor of 5 dB when comparing to the unenhanced modulator with the same electrode structure and effective switching voltage of 2 V at 1.8 GHz. The performance of the RF-photonic link using the fabr icated RE-MZM is evaluated. Optimization of RE-MZMs for operating at millimeter-wave frequencies is also reported. Factors that limit the modulation efficiency of an RE-MZM at millimeter-wave frequencies are identified. Novel resonant structures that can overcome these limitations are proposed. Preliminary designs indicate that greatly improved modulation efficiency could be expected.
9

Etude de solutions OFDM en technologie "Photonique Silicium" pour les futures générations de réseaux optiques passifs / Silicon Photonics based Optical OFDM Solutions for Future Passive Optical Networks

Beninca de Farias, Giovanni 05 December 2013 (has links)
Dans le contexte des Réseaux Optiques Passifs (PON), les opérateurs recherchent des solutions innovantes pour augmenter le débit agrégé, nombre d'utilisateurs et portée de la transmission. En plus, des solutions émetteurs-récepteurs à bas coût sont nécessaires. La technique de transmission Orthogonal Frequency Division Multiplexing (OFDM) peut améliorer les performances de la communication en termes de débit agrégé et portée comparé à la modulation classique On-Off Keying (OOK) mono-porteuse. Au même temps, la technologie Photonique sur Silicium permet de réduire le coût par unité des émetteurs-récepteurs, en raison de sa capacité de production en masse et intégration électro-optique. L'OFDM optique a déjà démontré son potentiel avec des composants optiques sur étagère. Par contre, son utilisation avec des émetteurs compatibles avec la technologie Photonique sur Silicium est plus difficile. L'objectif de ce travail est d'étudier les performances d'un lien basé sur des composants Photoniques sur Silicium utilisant la technique de modulation OFDM. Pour atteindre cet objectif, une plateforme de simulation dédiée est développée. Le modulateur-démodulateur OFDM est mise en place, ainsi que des modèles d'émetteurs Photoniques sur Silicium développés pendant la thèse. Ces modèles sont validés expérimentalement avec la caractérisation des composants disponibles au laboratoire. En parallèle, un banc expérimental est construit. Les émetteurs Photoniques sur Silicium sont comparés avec des composants à l'état-de-l' art sur étagère dans un lien OFDM optique. Dans les systèmes en modulation d'intensité et détection directe (IM/DD), une technique d'allocation quasi-optimale de bits et puissance avec de l'OFDM optique est proposée pour maximiser l'efficacité spectrale. Deux types d'émetteurs Photoniques sur Silicium sont considérés : des lasers hybrides III/V-sur-Silicium en modulation directe (expérimentation) et des modulateurs externes comme le Mach-Zehnder (MZM) (simulation) et en anneau-résonant (expérimentation et simulation). Les résultats expérimentaux montrent qu'un débit agrégé de 10Gbps peut être attendu jusqu'à 50km de fibre monomode, compatible avec les exigences de futures générations de PONs. La portée de la transmission (>10Gbps) avec le modulateur en anneau est limitée à 20km, en raison des pertes de couplage élevé en entrée/sortie de la puce. Les simulations montrent que la portée peut atteindre 100km si les pertes sont réduites. Une technique de modulation appelée Single-Side Band (SSB)-OFDM est connu pour améliorer le produit bande-passante-portée de la transmission, en comparaison avec des systèmes IM/DD (Dual-Side Band (DSB)). Par contre, l'émetteur SSB exige plusieurs composants électriques et optiques discrets, augmentant sa complexité. La technologie Photonique sur Silicium permet de un haut niveau d'intégration électro-optique. Pour cette raison, une implémentation spécifique d'un modulateur optique IQ sur Silicium permettant une génération efficace d'un signal SSB-OFDM est étudiée. Les résultats de simulation d'un cas d'étude montrent que l'émetteur Silicium permet d'atteindre une pénalité dans le budget optique relativement faible (de l'ordre de 3dB) comparé à un modulateur LiNbO3. Les solutions présentées dans cette thèse répondent aux besoins de future générations de PON en termes de débit avec des bandes-passantes relativement faibles (<6.25GHz). Ceci est un atout pour l'application considérée. Les tensions de modulations pour les liens IM/DD sont proches des celles fournies par l'électronique CMOS (about 2Vpp). Le développement récent de processeurs numériques et de convertisseurs numériques-analogiques à haut débit en CMOS font de l'OFDM une solution très attractive pour les futures générations de PONs, puisque des transmetteurs tout-Silicium peuvent désormais être envisagés. / In the context of Passive Optical Networks (PON), operators are looking for innovative solutions to increase aggregated data-rate, split-ratio and reach. Another requirement is that transceivers should be as low-cost as possible. The optical Orthogonal Frequency Division Multiplexing (OFDM) technique can improve performance of the transmission in terms of data-rate and reach as compared to classical single-carrier On-Off Keying (OOK) modulation. At the same time, the silicon photonics technology can lower the cost per unit of the transceiver, due to its mass production and E/O integration capabilities. Optical OFDM has already shown its potential using commercially available optical components. However, its use with silicon photonics Directly-Modulated Lasers (DML) and modulators is more challenging. The objective of this work is to study the performance of OFDM -based solutions for future PON, using silicon photonics transmitters. For that purpose, a dedicated simulation platform is developed. The OFDM modem is implemented, as well as models of silicon photonic devices built during this thesis. These models are validated by characterizing physical components available for test. In parallel, an experimental test-bed is developed. The silicon photonics transmitters are benchmarked with commercial-available transmitters for OFDM-based optical systems. For Intensity-Modulated/Directly-Detected (IM/DD) links, the use of optical OFDM with adaptive bit and power loading is proposed to maximize spectral efficiency. Two types of silicon photonics transmitters are considered: directly modulated III/V-on-silicon lasers (experiment) and external optical modulators such as Mach-Zehnder Modulator (MZM) (simulation) and ring-resonator (simulation and experiment). Experimental results show that the hybrid DML can provide more than 10Gbps aggregated data-rate over at least 50km, which is a requirement for future uplink PON (from the subscriber to the central office). For the silicon ring modulator, because of the high coupling loss in and out of the photonic chip, reach was limited to 20km for a data-rate higher than 10Gbps. These are the first experimental demonstrations of OFDM modulation with hybrid III/V-on-silicon lasers and silicon ring-resonator modulator. Besides, simulation results show that reach can be indeed improved up to 100km if the optical signal is amplified or the coupling loss reduced. A modulation technique called Single-Side Band (SSB)-OFDM is known to improve the [bandwidth x reach] product of the link, as compared to IM/DD (Dual-Side Band (DSB)) systems. However, it requires expensive transmitters with several discrete optical components. As silicon photonics technology allows a very high level of integration between different optical components and between electrical and optical devices, a silicon optical IQ modulator enabling ac{SSB}-ac{OFDM} technique is investigated. Simulation results of a study-case reveal that a relatively low optical budget penalty (up to 3dB) of the silicon photonics transmitters as compared to the LiNbO3 modulator is achieved. The solutions presented in this thesis are demonstrated to be compliant with future PON in terms of data-rate, with relatively low bandwidth (<6.25GHz) electronics. This is a great asset for the considered application. The driving voltages required for typical IM/DD systems showed to be closer to what CMOS driving circuitry can provide (about 2Vpp). Recent developments on high-speed digital signal processors and D/A-A/D converters, using CMOS technologies, make optical-OFDM an attractive solution for future PONs as full-Silicon-transmitters could be used.
10

Optický D/A převodník pro VLC aplikace / An Optical D/A Converter for VLC Applications

Dobesch, Aleš January 2017 (has links)
Disertační práce se zabývá optickým digitálně-analogovým převodníkem, jako alternativou optické části koncové vysílací jednotky (optický front-end) určené pro VLC (visible light communication) aplikace. Stěžejní část práce, která se věnuje numerickému modelování optického kanálu, prezentuje vliv bitové hloubky, topologie koncové části optického vysílače a geometrického uspořádání na přenášený signál. Součástí práce je návrh, realizace a ověření parametrů optického digitálně-analogového převodníku vycházející z předcházejících simulací. V poslední řadě práce obsahuje demonstraci vysokorychlostní optické komunikace s využitím navrženého VLC optického vysílače.

Page generated in 0.1162 seconds