Spelling suggestions: "subject:"0ptical parametric oscillator"" "subject:"aoptical parametric oscillator""
41 |
Development and Application of Burst-Mode Planar Laser Diagnostics for Detonating and Hypersonic FlowsAustin M Webb (17543874) 04 December 2023 (has links)
<p dir="ltr">Burst-mode lasers and burst-mode optical parametric oscillators (OPOs) are applied and developed for planar laser induced fluorescence (PLIF) measurements of key species for high-speed combustion measurements. OH-PLIF in the rotating detonation engine was performed for the first time at wave structure visualization in two different planes and was 10 times faster than any other burst mode OH-PLIF measurements at the time. The same system was used to perform another OH-PLIF experiment at 1 MHz for ~200 pulses to compare key features of the detonation wave structure with computational fluid dynamic simulations and a fundamental detonation tube experiment. The system was also used for seedless velocity measurements in the exhaust by tracking a pocket of OH with a technique called FLASH. A similar OPO was built, aligned, and tuned to perform 1 MHz NO PLIF in a Mach 10 hypersonic tunnel to visualize second mode instabilities and calculate the frequency in the boundary layer transition of a 7-degree cone. A high-efficiency OPO was developed and characterized utilizing the KTP crystal to provide narrow bandwidth pulses for the fluorescence of multiple species. The OPO was pumped at repetition rates up to 1 MHz and was calculated to have a 1.9% UV efficiency from the fundamental 1064 nm output. This is 3 – 5 times increase in efficiency from previous custom and commercial built OPOs. The OPO was applied to the RDC for OH PLIF in the combustor channel and NO PLIF for injector dynamics and response studies. Lastly, a burst-mode laser was used to perform LII on the post detonation blast flow field to measure explosively generated soot. The data was taken at 1 MHz and compared and corrected with a separate set of experiments and computational simulations.</p>
|
42 |
Triply-Resonant Cavity-Enhanced Spontaneous Parametric Down-ConversionAhlrichs, Andreas 22 July 2019 (has links)
Die verlässliche Erzeugung einzelner Photonen mit wohldefinierten Eigenschaften in allen Freiheitsgraden ist entscheidend für die Entwicklung photonischer Quantentechnologien. Derzeit basieren die wichtigsten Einzelphotonenquellen auf dem Prozess der spontanen parameterischen Fluoreszenz (SPF), bei dem ein Pumpphoton in einem nichtlinearen Medium spontan in ein Paar aus Signal und Idlerphotonen zerfällt. Resonator-überhöhte SPF, also das Plazieren des nichtlinearen Mediums in einem optischen Resonator, ist ein weit verbreitetes Verfahren, um Einzelphotonenquellen mit erhöhter Helligkeit und angepassten spektralen Eigenschaften zu konstruieren. Das Anpassen der spektralen Eigenschaften durch gezielte Auswahl der Resonatoreigenschaften ist besonders für hybride Quantentechnologienvon Bedeutung, welche darauf abzielen, unterschiedliche Quntensysteme so zu kombinieren, dass sich deren Vorteile ergänzen. Diese Arbeit stellt eine umfassende theoretische und experimentelle Analyse der dreifach resonanten SPF vor. Das aus der Literatur bekannte theoretische Modell wird diesbezüglich verbessert, dass der Einfluss sämtlicher Eigenschaften des Resonators auf die wichtigen experimentellen Größen (z.B. die Erzeugungsrate) gezielt ausgewertet werden kann. Dieses verbesserte und hoch genaue Modell stellt eine wichtige Grundlage für die Entwicklung und Optimierung neuartiger Photonenpaarquellen dar. Im experimentellen Teil dieser Arbeit wird der Aufbau und die Charakterisierung einer dreifach resonanten Photonenpaarquellen präsentiert. Die neu entwickelte digitale Regelelektronik sowie ein hochstabiler, schmalbandiger Monochromator welcher auf monolitischen, polarisationsunabhängigen Fabry-Pérot Resonatoren basiert, werden vorgestellt. Indem diese temperaturstabilisierten Resonatoren als Spetrumanalysator verwendet werden, wird zum ersten Mal die Frequenzkammstruktur des Spektrums der erzeugten Signal- und Idlerphotonen nachgewiesen. Des Weiteren wird der Einfluss der Pumpresonanz auf die Korrelationsfunktion und die Zweiphotoneninterferenz von Signal- und Idlerphotonen simuliert und vermessen. Abschließend werden Experimente aus dem Bereich der hybriden Quantennetzwerke präsentiert, in welchen Quantenfrequenzkonversion verwendet wird um die erzeugten Signalphotonen in das Telekommunikationsband zu transferieren. Dabei wird nachgewiesen, dass das temporale Wellenpaket durch die Konversion nicht beeinflusst wird und aufgezeigt, wie Quantennetzwerke von kommerziellen Telekommunikationstechnologien profitieren können. / The consistent generation of single photons with well-defined properties in all degrees of freedom is crucial for the development of photonic quantum technologies. Today, the most prominent sources of single photons are based on the process of spontaneous parametric down-conversion (SPDC) where a pump photon spontaneously decays into a pair of signal and idler photons inside a nonlinear medium. Cavity-enhanced SPDC, i.e., placing the nonlinear medium inside an optical cavity, is widely used to build photon-pair sources with increased brightness and tailored spectral properties. This spectral tailoring by selective adjustment of the cavity parameters is of particular importance for hybrid quantum technologies which seek to combine dissimilar quantum systems in a way that their advantages complement each other. This thesis provides a comprehensive theoretical and experimental analysis of triply-resonant cavity-enhanced SPDC. We improve the theoretical model found in the literature such that the influence of all resonator properties on the important experimental parameters (e.g., the generation rate) can be analyzed in detail. This convenient and highly accurate model of cavity-enhanced SPDC represents an important basis for the design and optimization of novel photonpair sources. The experimental part of this thesis presents the setup and characterization of a triply-resonant photon-pair source. We describe the digital control system used to operate this source over days without manual intervention, and we present a highly stable, narrow-linewidth monochromator based on cascaded, polarization-independent monolithic Fabry-Pérot cavities. Utilizing these temperature-stabilized cavities as a spectrum analyzer, we verify, for the first time, the frequency comb spectral structure of photons generated by cavity-enhanced SPDC. We further simulate and measure the impact of the pump resonance on the temporal wave-packets and the two-photon interference of signal and idler photons. Finally, we present a series of experiments in the context of hybrid quantum networks where we employ quantum frequency conversion (QFC) to transfer the generated signal photons into the telecommunication band. We verify the preservation of the temporal wave-packet upon QFC and highlight how quantum networks can benefit from advanced commercial telecommunication technologies.
|
Page generated in 0.1281 seconds