Spelling suggestions: "subject:"doptics"" "subject:"glyptics""
441 |
A novel all-optical wavelength exchange in highly nonlinear fiber馮慧琳, Fung, Wai-lam. January 2007 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy
|
442 |
MULTIPLE SOURCE TESTING OF CAMERA SYSTEMSRodriguez-Torres, Cristobal 06 1900 (has links)
QC 351 A7 no. 54 / It is possible to use a target of two coherent point sources, with a separation much greater than the resolution limit of a diffraction -limited lens, to determine the best focus of a photographic system. The interference pattern formed is a function of the focus error. Measurement of its characteristics (fringe period, fringe number, etc.) for different focus errors should indicate the best focus. Since the measurement is made at a long distance from focus, there is no ambiguity as to the direction of the best focus position relative to the film. An experiment, in which known focus errors were introduced on both sides of a visual best focus for a two -coherent -point- sources target, was designed and carried out for a 35 -mm camera system to determine the usefulness of such a method of determining best focus. A comparison test was made against a standard resolution vs focus error method. The experiment showed an unambiguous best focus within an error of 10 pm. The focus position was unambiguous because the final relationship studied was linear, and only one value was obtained. In general the new method appears to be faster, simpler, cheaper, and more accurate than the standard resolution method, and it requires no special instrumentation on the camera being tested.
|
443 |
Point-Spread Function Assessment of SG-DBR Based Swept Source for OCT ImagingGilbert, David Wilkey 01 June 2012 (has links)
Swept Source Optical Coherence Tomography (SS-OCT) is a medical imaging technique that requires high repetition rate, widely-tunable coherent laser sources. Sampled grating distributed Bragg reflector (SG-DBR) lasers are proven in telecom applications and are expected to fulfill the requirements for SS-OCT at a significantly lower cost than alternative solutions.
Constructed entirely on a semiconductor substrate, SG-DBR lasers require four synchronized waveforms to modulate the output wavelength and intensity. Because of this unique tuning mechanism, there are a number of systematic and noise sources that can affect the quality of the OCT point-spread function (PSF). Based on these noise sources, software is developed to simulate the waveforms in an SS-OCT system and determine the factors that limit width of the PSF central peak and the broadband skirts. Design curves are then created to specify the requirements to obtain a given performance.
Next, experimental tests are performed on a JDS Uniphase C-band SG-DBR laser to assess its performance limitations. Finally, by comparing theory and experiment, recommendations are made on acceptable systematic and random noise errors induced in the PSF.
|
444 |
Using sum rules to guide experiential and theoretical studies of the intrinsic nonlinear-optical susceptibility of organic moleculesZhou, Juefei, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, December 2007. / Includes bibliographical references.
|
445 |
Diode-pumped rare-earth-doped quasi-three-level lasersBjurshagen, Stefan January 2005 (has links)
Many rare-earth-doped materials are suitable for laser operation and this thesis focuses on diode-pumped solid-state lasers employing crystals doped with the trivalent rare-earth ions neodymium (Nd3+), ytterbium (Yb3+) and erbium (Er3+). Especially, the quasi-three-level transitions in Nd and Yb have been studied as well as the eye-safe three-level transition around 1.5 µm in Er. Quasi-three-level laser transitions in neodymium-doped crystals such as Nd:YAG, Nd:YLF and Nd:YVO4 have received a great deal of interest because they allow for generation of blue light by frequency doubling. For solid-state blue laser sources, there exist numerous applications as in high-density optical data storage, colour displays, submarine communication and biological applications. Efficient lasing on quasi-three-level transitions at 900¬–950 nm in Nd-doped crystals is considerably more difficult to achieve than on the stronger four-level transitions at 1–1.1 µm. The problems with these quasi-three-level transitions are a significant reabsorption loss at room temperature and a small stimulated emission cross section. This requires a tight focusing of the pump light, which is achieved by end-pumping with high-intensity diode lasers. Nd:YAG lasers at the 946 nm transition have been built and a maximum power of 7.0 W was obtained. By inserting a thin quartz etalon in the laser cavity, the 938.5 nm laser line could be selected and an output power of 3.9 W was then obtained. By using nonlinear crystals, frequency-doubling of laser light at both 946 nm and 938.5 nm was achieved. Efficient generation of blue light at 473 nm has been obtained in periodically poled KTP, both in single-pass extra-cavity and intracavity configurations. More than 0.5 W was obtained at 473 nm by intracavity doubling. Intracavity second harmonic generation of the 938.5 nm transition gave slightly more than 200 mW at 469 nm. During recent years, Yb-doped double-tungstate crystals like KGW and KYW have shown efficient laser operation. A comparative, experimental study of the laser performance and thermal-lensing properties between standard b-cut Yb:KGW and Yb:KGW cut along a novel athermal direction is presented. The results show that the thermal lens is about two times weaker and less astigmatic in the athermal-direction-cut crystal, for the same absorbed power. Also, Er-Yb-doped KGW and KYW have been investigated and the fluorescence dynamics have been measured for the Yb (2F5/2), Er (4I13/2) and Er (4S3/2) levels around 1 µm, 1.5 µm and 0.55 µm, respectively. The influence of upconversion is a detrimental effect both in Nd-doped and Er-Yb-doped lasers. Analytical models starting from rate equations have been developed for these lasers including the influence of upconversion effects. The results of the general models have been applied to 946 nm Nd:YAG lasers and to Er-Yb-doped double-tungstate crystals in order to find the optimum doping concentrations for high gain for an eye-safe laser at 1.53 µm. / QC 20100901
|
446 |
Extended Jaynes-Cummings Models In Cavity QedLarson, Jonas January 2005 (has links)
Due to the improvement within cavity quantum electrodynamics experiments during the last decades, what was former seen as 'toy models' are today realized in laboratories. A controlled isolated coherent evolution of one or a few atoms coupled to a single mode inside a cavity is achievable. Such systems are well suited for studying purely quantum mechanical effects, and also for performing quantum gates, necessary for quantum computing. The Jaynes-Cummings model has served as a theoretical description of the interaction. However, as the experimental techniques are improved, for example, atom cooling, the use of multi-level atoms or multi-modes and driving of atoms or elds by external lasers, extensions of the original Jaynes-Cummings model are needed. In this thesis we study some of these extended models, and in particular multi-level models, time-dependent models and quantized motion models. Both analytical and numerical analysis are considered. The two-level structure of the Jaynes-Cummings model leads to applications of known solvable time-dependent two-level Schrödinger equations. In other cases, di erent forms of adiabatic approximate solutions are used, and with the analytically solvable models, the amplitudes of non-adiabatic contributions may be estimated. For higher dimensional systems, STIRAP and multi-STIRAP methods are applied. It is shown how the time-dependent models may be used for preparation of various kinds of non-classical states, and also to generate universal sets of quantum gates, both on atomic and eld qubits. When the atoms are cooled to very low temperatures, their velocities must be treated quantum mechanically, and we have studied the dynamics of such cases for di erent coupling shapes. Again numerical and analytical approaches have been used and compared, wave-packet propagations of the atom, approaching and traversing the cavity, have been performed. For periodic couplings, standing wave cavity modes, the dynamics has been described by e ective parameters; group velocity or atomic index of refraction and effective mass. Tunneling resonances for ultra cold atoms have been exhibited in the STIRAP models for certain initial conditions. / QC 20101027
|
447 |
Extended Jaynes-Cummings models in cavity QEDLarson, Jonas January 2005 (has links)
<p>Due to the improvement within cavity quantum electrodynamics experiments during the last decades, what was former seen as 'toy models' are today realized in laboratories. A controlled isolated coherent evolution of one or a few atoms coupled to a single mode inside a cavity is achievable. Such systems are well suited for studying purely quantum mechanical effects, and also for performing quantum gates, necessary for quantum computing. The Jaynes-Cummings model has served as a theoretical description of the interaction. However, as the experimental techniques are improved, for example, atom cooling, the use of multi-level atoms or multi-modes and driving of atoms or elds by external lasers, extensions of the original Jaynes-Cummings model are needed. In this thesis we study some of these extended models, and in particular multi-level models, time-dependent models and quantized motion models. Both analytical and numerical analysis are considered. The two-level structure of the Jaynes-Cummings model leads to applications of known solvable time-dependent two-level Schrödinger equations. In other cases, di erent forms of adiabatic approximate solutions are used, and with the analytically solvable models, the amplitudes of non-adiabatic contributions may be estimated. For higher dimensional systems, STIRAP and multi-STIRAP methods are applied. It is shown how the time-dependent models may be used for preparation of various kinds of non-classical states, and also to generate universal sets of quantum gates, both on atomic and eld qubits. When the atoms are cooled to very low temperatures, their velocities must be treated quantum mechanically, and we have studied the dynamics of such cases for di erent coupling shapes. Again numerical and analytical approaches have been used and compared, wave-packet propagations of the atom, approaching and traversing the cavity, have been performed. For periodic couplings, standing wave cavity modes, the dynamics has been described by e ective parameters; group velocity or atomic index of refraction and effective mass. Tunneling resonances for ultra cold atoms have been exhibited in the STIRAP models for certain initial conditions.</p>
|
448 |
Y-y diagram analysis of two-surface optical systems with zero third-order spherical aberrationPowell, Frank Myers, 1936- January 1970 (has links)
No description available.
|
449 |
Developing Single-Laser Sources for Multimodal Coherent Anti-Stokes Raman Scattering MicroscopyPEGORARO, ADRIAN FRANK 11 August 2011 (has links)
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2011-08-11 13:46:26.065
|
450 |
A novel all-optical wavelength exchange in highly nonlinear fiberFung, Wai-lam. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Also available in print.
|
Page generated in 0.0847 seconds