• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 72
  • 16
  • Tagged with
  • 266
  • 266
  • 112
  • 112
  • 89
  • 86
  • 65
  • 61
  • 53
  • 49
  • 39
  • 37
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Model-based trade studies in systems architectures design phases / Etudes comparatives basées sur les modèles en phase de conception d’architectures de systèmes

Albarello, Nicolas 17 December 2012 (has links)
La conception d'architectures de systèmes est une tâche complexe qui implique des enjeux majeurs. Au cours de cette activité, les concepteurs du système doivent créer des alternatives de conception et doivent les comparer entre elles afin de sélectionner l'architecture la plus appropriée suivant un ensemble de critères. Dans le but d'étudier différentes alternatives, les concepteurs doivent généralement limiter leur étude comparative à une petite partie de l'espace de conception qui peut être composé d'un nombre immense de solutions. Traditionnellement, le processus de conception d'architecture est principalement dirigé par le jugement et l'expérience des concepteurs, et les alternatives sélectionnées sont des versions adaptées de solutions connues. Le risque est donc de sélectionner une solution pertinente mais sous-optimale. Pour gagner en confiance sur l'optimalité de la solution retenue, la couverture de l'espace de conception doit être augmentée. L'utilisation de méthodes de synthèse calculatoire d'architecture a prouvé qu'elle était un moyen efficace pour supporter les concepteurs dans la conception d'artefacts d'ingénierie (structures, circuits électriques...). Pour assister les concepteurs de systèmes durant le processus de conception d'architecture, une méthode calculatoire pour les systèmes complexes est définie. Cette méthode emploie une approche évolutionnaire (algorithmes génétiques) pour guider le processus d'exploration de l'espace de conception vers les zones optimales. La population initiale de l'algorithme génétique est créée grâce à une technique de synthèse calculatoire d'architecture qui permet de créer différentes architectures physiques et tables d'allocations pour une architecture fonctionnelle donnée. La méthode permet d'obtenir les solutions optimales du problème de conception posé. Ces solutions peuvent être ensuite utilisées par les concepteurs pour des études comparatives plus détaillées ou pour des négociations avec les fournisseurs de systèmes / The design of system architectures is a complex task which involves major stakes. During this activity, system designers must create design alternatives and compare them in order to select the most relevant system architecture given a set of criteria. In order to investigate different alternatives, designers must generally limit their trade studies to a small portion of the design-space which can be composed of a huge amount of solutions. Traditionally, the architecture design process is mainly driven by engineering judgment and designers' experiences and the selected alternatives are often adapted versions of known solutions. The risk is then to select a pertinent but yet under optimal solution. In order to increase the confidence in the optimality of the selected solution, the coverage of the design-space must be increased. The use of computational design synthesis methods proved to be an efficient way to support designers in the design of engineering artifacts (structures, electrical circuits...). In order to assist system designers during the architecture design process, a computational method for complex systems is defined. This method uses an evolutionary approach (genetic algorithms) to guide the design-space exploration process toward optimal zones. The initial population of the genetic algorithm is created thanks to a computational design synthesis technique which permits to create different physical architectures and allocation mappings for a given functional architecture. The method permits to obtain the optimal solutions of the stated design problem. These solutions can be then used by designers for more detailed trade studies or for technical negotiations with system suppliers.
82

Load Balancing of Multi-physics Simulation by Multi-criteria Graph Partitioning / Equilibrage de charge pour des simulations multi-physiques par partitionnement multcritères de graphes

Barat, Remi 18 December 2017 (has links)
Les simulations dites multi-physiques couplent plusieurs phases de calcul. Lorsqu’elles sont exécutées en parallèle sur des architectures à mémoire distribuée, la minimisation du temps de restitution nécessite dans la plupart des cas d’équilibrer la charge entre les unités de traitement, pour chaque phase de calcul. En outre, la distribution des données doit minimiser les communications qu’elle induit. Ce problème peut être modélisé comme un problème de partitionnement de graphe multi-critères. On associe à chaque sommet du graphe un vecteur de poids, dont les composantes, appelées « critères », modélisent la charge de calcul porté par le sommet pour chaque phase de calcul. Les arêtes entre les sommets, indiquent des dépendances de données, et peuvent être munies d’un poids reflétant le volume de communication transitant entre les deux sommets. L’objectif est de trouver une partition des sommets équilibrant le poids de chaque partie pour chaque critère, tout en minimisant la somme des poids des arêtes coupées, appelée « coupe ». Le déséquilibre maximum toléré entre les parties est prescrit par l’utilisateur. On cherche alors une partition minimisant la coupe, parmi toutes celles dont le déséquilibre pour chaque critère est inférieur à cette tolérance. Ce problème étant NP-Dur dans le cas général, l’objet de cette thèse est de concevoir et d’implanter des heuristiques permettant de calculer efficacement de tels partitionnements. En effet, les outils actuels renvoient souvent des partitions dont le déséquilibre dépasse la tolérance prescrite. Notre étude de l’espace des solutions, c’est-à-dire l’ensemble des partitions respectant les contraintes d’équilibre, révèle qu’en pratique, cet espace est immense. En outre, nous prouvons dans le cas mono-critère qu’une borne sur les poids normalisés des sommets garantit que l’espace des solutions est non-vide et connexe. Nous fondant sur ces résultats théoriques, nous proposons des améliorations de la méthode multi-niveaux. Les outils existants mettent en oeuvre de nombreuses variations de cette méthode. Par l’étude de leurs codes sources, nous mettons en évidence ces variations et leurs conséquences à la lumière de notre analyse sur l’espace des solutions. Par ailleurs, nous définissons et implantons deux algorithmes de partitionnement initial, se focalisant sur l’obtention d’une solution à partir d’une partition potentiellement déséquilibrée, au moyen de déplacements successifs de sommets. Le premier algorithme effectue un mouvement dès que celui-ci améliore l’équilibre, alors que le second effectue le mouvement réduisant le plus le déséquilibre. Nous présentons une structure de données originale, permettant d’optimiser le choix des sommets à déplacer, et conduisant à des partitions de déséquilibre inférieur en moyenne aux méthodes existantes. Nous décrivons la plate-forme d’expérimentation, appelée Crack, que nous avons conçue afin de comparer les différents algorithmes étudiés. Ces comparaisons sont effectuées en partitionnant un ensembles d’instances comprenant un cas industriel et plusieurs cas fictifs. Nous proposons une méthode de génération de cas réalistes de simulations de type « transport de particules ». Nos résultats démontrent la nécessité de restreindre les poids des sommets lors de la phase de contraction de la méthode multi-niveaux. En outre, nous mettons en évidence l’influence de la stratégie d’ordonnancement des sommets, dépendante de la topologie du graphe, sur l’efficacité de l’algorithme d’appariement « Heavy-Edge Matching » dans cette même phase. Les différents algorithmes que nous étudions sont implantés dans un outil de partitionnement libre appelé Scotch. Au cours de nos expériences, Scotch et Crack renvoient une partition équilibrée à chaque exécution, là où MeTiS, l’outil le plus utilisé actuellement, échoue une grande partie du temps. Qui plus est, la coupe des solutions renvoyées par Scotch et Crack est équivalente ou meilleure que celle renvoyée par MeTiS. / Multiphysics simulation couple several computation phases. When they are run in parallel on memory-distributed architectures, minimizing the simulation time requires in most cases to balance the workload across computation units, for each computation phase. Moreover, the data distribution must minimize the induced communication. This problem can be modeled as a multi-criteria graph partitioning problem. We associate with each vertex of the graph a vector of weights, whose components, called “criteria”, model the workload of the vertex for each computation phase. The edges between vertices indicate data dependencies, and can be given a weight representing the communication volume transferred between the two vertices. The goal is to find a partition of the vertices that both balances the weights of each part for each criterion, and minimizes the “edgecut”, that is, the sum of the weights of the edges cut by the partition. The maximum allowed imbalance is provided by the user, and we search for a partition that minimizes the edgecut, among all the partitions whose imbalance for each criterion is smaller than this threshold. This problem being NP-Hard in the general case, this thesis aims at devising and implementing heuristics that allow us to compute efficiently such partitions. Indeed, existing tools often return partitions whose imbalance is higher than the prescribed tolerance. Our study of the solution space, that is, the set of all the partitions respecting the balance constraints, reveals that, in practice, this space is extremely large. Moreover, we prove in the mono-criterion case that a bound on the normalized vertex weights guarantees the existence of a solution, and the connectivity of the solution space. Based on these theoretical results, we propose improvements of the multilevel algorithm. Existing tools implement many variations of this algorithm. By studying their source code, we emphasize these variations and their consequences, in light of our analysis of the solution space. Furthermore, we define and implement two initial partitioning algorithms, focusing on returning a solution. From a potentially imbalanced partition, they successively move vertices from one part to another. The first algorithm performs any move that reduces the imbalance, while the second performs at each step the move reducing the most the imbalance. We present an original data structure that allows us to optimize the choice of the vertex to move, and leads to partitions of imbalance smaller on average than existing methods. We describe the experimentation framework, named Crack, that we implemented in order to compare the various algorithms at stake. This comparison is performed by partitioning a set of instances including an industrial test case, and several fictitious cases. We define a method for generating realistic weight distributions corresponding to “Particles-in-Cells”-like simulations. Our results demonstrate the necessity to coerce the vertex weights during the coarsening phase of the multilevel algorithm. Moreover, we evidence the impact of the vertex ordering, which should depend on the graph topology, on the efficiency of the “Heavy-Edge” matching scheme. The various algorithms that we consider are implemented in an open- source graph partitioning software called Scotch. In our experiments, Scotch and Crack returned a balanced partition for each execution, whereas MeTiS, the current most used partitioning tool, fails regularly. Additionally, the edgecut of the solutions returned by Scotch and Crack is equivalent or better than the edgecut of the solutions returned by MeTiS.
83

Inverse multi-objective combinatorial optimization

Roland, Julien 12 November 2013 (has links)
The initial question addressed in this thesis is how to take into account the multi-objective aspect of decision problems in inverse optimization. The most straightforward extension consists of finding a minimal adjustment of the objective functions coefficients such that a given feasible solution becomes efficient. However, there is not only a single question raised by inverse multi-objective optimization, because there is usually not a single efficient solution. The way we define inverse multi-objective<p>optimization takes into account this important aspect. This gives rise to many questions which are identified by a precise notation that highlights a large collection of inverse problems that could be investigated. In this thesis, a selection of inverse problems are presented and solved. This selection is motivated by their possible applications and the interesting theoretical questions they can rise in practice. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
84

Chemin optimal, conception et amélioration de réseaux sous contrainte de distance / Optimal path, design and improvement of networks with distance constraint

Nakache, Elie 01 July 2016 (has links)
Cette thèse porte sur différents problèmes d'optimisation combinatoire dont nous avons caractérisé la difficulté en décrivant des réductions et des algorithmes polynomiaux exacts ou approchés.En particulier, nous étudions le problème de trouver, dans un graphe orienté sans cycle dont les sommets sont étiquetés, un chemin qui passe par un maximum d'étiquettes différentes. Nous établissons qu'il n'existe pas d'algorithme polynomial avec un facteur constant pour ce problème. Nous présentons aussi un schéma qui permet d'obtenir, pour tout $epsilon >0$, un algorithme polynomial qui calcule un chemin collectant $ O(OPT^{1-epsilon})$ étiquettes.Nous étudions ensuite des variantes du problème de l'arbre couvrant de poids minimum auquel nous ajoutons des contraintes de distance et d'intermédiarité. Nous prouvons que certaines variantes se résolvent en temps polynomial comme des problèmes de calcul d'un libre de poids minimum commun à deux matroïdes. Pour une autre variante, nous présentons un algorithme d'approximation facteur 2 et nous prouvons qu'il n'existe pas d'algorithme polynomial avec un meilleur facteur constant.Enfin, nous étudions un problème d'améliorations de réseaux du point de vue du partage des coûts. Nous montrons que la fonction de coût associée à ce problème est sous-modulaire et nous utilisons ce résultat pour déduire un mécanisme de partage des coûts qui possède plusieurs bonnes propriétés. / In this thesis, we investigate several combinatorial optimization problems and characterize their computational complexity and approximability by providing polynomial reductions and exact or approximation algorithms.In particular, we study the problem of finding, in a vertex-labeled directed acyclic graph, a path collecting a maximum number of distinct labels. We prove that no polynomial time constant factor approximation algorithm exists for this problem. Furthermore, we describe a scheme that produces, for any $epsilon >0$, a polynomial time algorithm that computes a solution collecting $O(OPT^{1-epsilon})$ labels. Then, we study several variants of the minimum cost spanning tree problem that take into account distance and betweenness constraints. We prove that most of these problems can be solved in polynomial time using a reduction to the weighted matroid intersection problem. For an other problem, we give a factor 2 approximation algorithm and prove the optimality of this ratio.Finally, we study a network improvement problem from a cost sharing perspective. We establish that the cost function corresponding to this problem is submodular and use this result to derive a cost sharing mechanism having several good properties.
85

Efficient local search for several combinatorial optimization problems / Recherche locale performante pour la résolution de plusieurs problèmes combinatoires

Buljubasic, Mirsad 20 November 2015 (has links)
Cette thèse porte sur la conception et l'implémentation d'algorithmes approchés pour l'optimisation en variables discrètes. Plus particulièrement, dans cette étude nous nous intéressons à la résolution de trois problèmes combinatoires difficiles : le « Bin-Packing », la « Réaffectation de machines » et la « Gestion des rames sur les sites ferroviaires ». Le premier est un problème d'optimisation classique et bien connu, tandis que les deux autres, issus du monde industriel, ont été proposés respectivement par Google et par la SNCF. Pour chaque problème, nous proposons une approche heuristique basée sur la recherche locale et nous comparons nos résultats avec les meilleurs résultats connus dans la littérature. En outre, en guise d'introduction aux méthodes de recherche locale mise en œuvre dans cette thèse, deux métaheuristiques, GRASP et Recherche Tabou, sont présentées à travers leur application au problème de la couverture minimale. / This Ph.D. thesis concerns algorithms for Combinatorial Optimization Problems. In Combinatorial Optimization Problems the set of feasible solutions is discrete or can be reduced to a discrete one, and the goal is to find the best possible solution. Specifically, in this research we consider three different problems in the field of Combinatorial Optimization including One-dimensional Bin Packing (and two similar problems), Machine Reassignment Problem and Rolling Stock Problem. The first one is a classical and well known optimization problem, while the other two are real world and very large scale problems arising in industry and have been recently proposed by Google and French Railways (SNCF) respectively. For each problem we propose a local search based heuristic algorithm and we compare our results with the best known results in the literature. Additionally, as an introduction to local search methods, two metaheuristic approaches, GRASP and Tabu Search are explained through a computational study on Set Covering Problem.
86

Ordonnancement cumulatif en programmation par contraintes : caractérisation énergétique des raisonnements et solutions robustes / Cumulative scheduling in constraint programming : energetic characterization of reasoning and robust solutions

Derrien, Alban 27 November 2015 (has links)
La programmation par contraintes est une approche régulièrement utilisée pour traiter des problèmes d’ordonnancement variés. Les problèmes d’ordonnancement cumulatifs représentent une classe de problèmes dans laquelle des tâches non morcelable peuvent être effectuées en parallèle. Ces problèmes apparaissent dans de nombreux contextes réels, tels que par exemple l’allocation de machines virtuelles ou l’ordonnancement de processus dans le "cloud", la gestion de personnel ou encore d’un port. De nombreux mécanismes ont été adaptés et proposés en programmation par contraintes pour résoudre les problèmes d’ordonnancement. Les différentes adaptations ont abouti à des raisonnements qui semblent à priori significativement distincts. Dans cette thèse nous avons effectué une analyse détaillée des différents raisonnements, proposant à la fois une notation unifiée purement théorique mais aussi des règles de dominance, permettant une amélioration significative du temps d’exécution d’algorithmes issus de l’état de l’art, pouvant aller jusqu’à un facteur sept. Nous proposons aussi un nouveau cadre de travail pour l’ordonnancement cumulatif robuste, permettant de trouver des solutions supportant qu’à tout moment une ou plusieurs tâches soit retardées, sans remise en cause de l’ordonnancement généré et en gardant une date de fin de projet satisfaisante. Dans ce cadre, nous proposons une adaptation d’un algorithme de l’état de l’art, Dynamic Sweep. / Constraint programming is an approach regularly used to treat a variety of scheduling problems. Cumulative scheduling problems represent a class of problems in which non-preemptive tasks can be performed in parallel. These problems appear in many contexts, such as for example the allocation of virtual machines, the ordering process in the "cloud", personnel management or a port. Many mechanisms have been adapted and offered in constraint programming to solve scheduling problems. The various adaptations have resulted in reasoning that appear a priori significantly different. In this thesis we performed a detailed analysis of the various arguments, offering both a theoretical unified caracterization but also dominance rules, allowing a significant improvement in execution time of algorithms from the state of the art, up to a factor of seven. we also propose a new framework for robust cumulative scheduling, to find solutions that support at any time one or more tasks to be delayed while keeping a satisfactory end date of the project and without calling into question the generated scheduling. In this context, we propose an adaptation of an algorithm of the state of the art, Dynamic Sweep.
87

Advanced methods to solve the maximum parsimony problem / Méthodes avancées pour la résolution du problème de maximum parcimonie

Vazquez ortiz, Karla Esmeralda 14 June 2016 (has links)
La reconstruction phylogénétique est considérée comme un élément central de divers domaines comme l’écologie, la biologie et la physiologie moléculaire pour lesquels les relations généalogiques entre séquences d’espèces ou de gènes, représentées sous forme d’arbres, peuvent apporter des éclairages significatifs à la compréhension de phénomènes biologiques. Le problème de Maximum de Parcimonie est une approche importante pour résoudre la reconstruction phylogénétique en se basant sur un critère d’optimalité pour lequel l’arbre comprenant le moins de mutations est préféré. Dans cette thèse nous proposons différentes méthodes pour s’attaquer à la nature combinatoire de ce problème NP-complet. Premièrement, nous présentons un algorithme de Recuit Simulé compétitif qui nous a permis de trouver des solutions de meilleure qualité pour un ensemble de problèmes. Deuxièmement, nous proposons une nouvelle technique de Path-Relinking qui semble intéressante pour comparer des arbres mais pas pour trouver des solutions de meilleure qualité. Troisièmement, nous donnons le code d’une implantation sur GPU de la fonction objectif dont l’intérêt est de réduire le temps d’exécution de la recherche pour des instances dont la longueur des séquences est importante. Finalement, nous introduisons un prédicteur capable d’estimer le score optimum pour un vaste ensemble d’instances avec une très grande précision. / Phylogenetic reconstruction is considered a central underpinning of diverse fields like ecology, molecular biology and physiology where genealogical relationships of species or gene sequences represented as trees can provide the most meaningful insights into biology. Maximum Parsimony (MP) is an important approach to solve the phylogenetic reconstruction based on an optimality criterion under which the tree that minimizes the total number of genetic transformations is preferred. In this thesis we propose different methods to cope with the combinatorial nature of this NP-complete problem. First we present a competitive Simulated Annealing algorithm which helped us find trees of better parsimony score than the ones that were known for a set of instances. Second, we propose a Path-Relinking technique that appears to be suitable for tree comparison but not for finding trees of better quality. Third, we give a GPU implementation of the objective function of the problem that can reduce the runtime for instances that have an important number of residues per taxon. Finally, we introduce a predictor that is able to estimate the best parsimony score of a huge set of instances with a high accuracy.
88

Energie, coopération méta-heuristiques et logique floue pour l'optimisation difficile / Energy, Cooperation Meta-heuristics and Fuzzy Logic for NP-hard Optimization

Autuori, Julien 05 December 2014 (has links)
Au cours de cette thèse, l'exploration de l'espace de solutions par des métaheuristiques est abordée. Les métaheuristiques sont des méthodes d'optimisation utilisées pour résoudre des problèmes NP-difficile. Elles explorent aléatoirement l'espace de recherche pour trouver les meilleures solutions. Dans un premier temps, l'ensemble des solutions est modélisé par un espace unidimensionnel par une Méthode de Conversion de l'Espace de recherche (MCE). Des métriques sont proposées pour évaluer l'exploration de l'espace de recherche par une métaheuristique en identifiant les zones explorées et inexplorées. Ces métriques sont utilisées pour orienter l'exploration de l'espace de recherche d'une méthode d'optimisation.La convergence est améliorée en accentuant le recherche dans les zones explorées. Pour sortir des minimums locaux, l'exploration est diversifiée en la dirigeant vers les zones inexplorées. En associant l'exploration du voisinage des solutions et ces métriques cartographiques, il est possible d'améliorer les performances des métaheuristiques. Plusieurs algorithmes mono-objectifs et multiobjectifs sont implémentés en version classique, hybridé par la recherche locale et par la MCE. Le Flexible Job Shop Problem (FJSP) est utilisé comme problème de référence. Les expérimentations avec les algorithmes hybridés montrent une amélioration des performances / In this thesis, the solution space exploration by the metaheuristic is developed. The metaheuristics optimization methods are used to solve NP-hard problems. They explore randomly the search space to look for the best solutions. In a first step, the solution set is modeled by a one-dimensional space by a Mapping Method (MaM). Metrics are proposed to evaluate the search space exploration by a metaheuristic, identifying the explored and unexplored zones. These metrics are used to guide the search space exploration of an optimization method. The convergence is improved by emphasizing the research in the zones explored. To get out local minima, the exploration is diversified by pointing it towards the unexplored zones. Combining the neighbour discovery of the solutions and these mapping metrics, it is possible to improve the performance of metaheuristics. Several single-objective and multi-objective algorithms are implemented in the classic version, hybridized with local search and MaM. The Flexible Job Shop Problem (FJSP) is used as a reference problem. The experimentations with hybridized algorithms show performance improved
89

Computational approaches toward protein design / Approches computationnelles pour le design de protéines

Traore, Seydou 23 October 2014 (has links)
Le Design computationnel de protéines, en anglais « Computational Protein Design » (CPD), est un champ derecherche récent qui vise à fournir des outils de prédiction pour compléter l'ingénierie des protéines. En effet,outre la compréhension théorique des propriétés physico-chimiques fondamentales et fonctionnelles desprotéines, l’ingénierie des protéines a d’importantes applications dans un large éventail de domaines, y comprisdans la biomédecine, la biotechnologie, la nanobiotechnologie et la conception de composés respectueux del’environnement. Le CPD cherche ainsi à accélérer le design de protéines dotées des propriétés désirées enpermettant le traitement d’espaces de séquences de large taille tout en limitant les coûts financier et humain auniveau expérimental.Pour atteindre cet objectif, le CPD requière trois ingrédients conçus de manière appropriée: 1) une modélisationréaliste du système à remodeler; 2) une définition précise des fonctions objectives permettant de caractériser lafonction biochimique ou la propriété physico-chimique cible; 3) et enfin des méthodes d'optimisation efficacespour gérer de grandes tailles de combinatoire.Dans cette thèse, nous avons abordé le CPD avec une attention particulière portée sur l’optimisationcombinatoire. Dans une première série d'études, nous avons appliqué pour la première fois les méthodesd'optimisation de réseaux de fonctions de coût à la résolution de problèmes de CPD. Nous avons constaté qu’encomparaison des autres méthodes existantes, nos approches apportent une accélération du temps de calcul parplusieurs ordres de grandeur sur un large éventail de cas réels de CPD comprenant le design de la stabilité deprotéines ainsi que de complexes protéine-protéine et protéine-ligand. Un critère pour définir l'espace demutations des résidus a également été introduit afin de biaiser les séquences vers celles attendues par uneévolution naturelle en prenant en compte des propriétés structurales des acides aminés. Les méthodesdéveloppées ont été intégrées dans un logiciel dédié au CPD afin de les rendre plus facilement accessibles à lacommunauté scientifique. / Computational Protein Design (CPD) is a very young research field which aims at providing predictive tools to complementprotein engineering. Indeed, in addition to the theoretical understanding of fundamental properties and function of proteins,protein engineering has important applications in a broad range of fields, including biomedical applications, biotechnology,nanobiotechnology and the design of green reagents. CPD seeks at accelerating the design of proteins with wanted propertiesby enabling the exploration of larger sequence space while limiting the financial and human costs at experimental level.To succeed this endeavor, CPD requires three ingredients to be appropriately conceived: 1) a realistic modeling of the designsystem; 2) an accurate definition of objective functions for the target biochemical function or physico-chemical property; 3)and finally an efficient optimization framework to handle large combinatorial sizes.In this thesis, we addressed CPD problems with a special focus on combinatorial optimization. In a first series of studies, weapplied for the first time the Cost Function Network optimization framework to solve CPD problems and found that incomparison to other existing methods, it brings several orders of magnitude speedup on a wide range of real CPD instancesthat include the stability design of proteins, protein-protein and protein-ligand complexes. A tailored criterion to define themutation space of residues was also introduced in order to constrain output sequences to those expected by natural evolutionthrough the integration of some structural properties of amino acids in the protein environment. The developed methods werefinally integrated into a CPD-dedicated software in order to facilitate its accessibility to the scientific community.
90

Robust covering problems : formulations, algorithms and an application / Problème de couverture robuste : formulations, algorithmes et une application

Almeida Coco, Amadeu 06 October 2017 (has links)
Deux problèmes robustes d'optimisation NP-difficiles sont étudiés dans cette thèse: le problème min-max regret de couverture pondérée (min-max regret WSCP) et le problème min-max regret de couverture et localisation maximale (min-max regret MCLP). Les données incertaines dans ces problèmes sont modélisées par des intervalles et seules les valeurs minimales et maximales pour chaque intervalle sont connues. Le min-max regret WSCP a été investigué notamment dans le cadre théorique, alors que le min-max regret MCLP a des applications en logistique des catastrophes étudiées dans cette thèse. Deux autres critères d'optimisation robuste ont été dérivés pour le MCLP: le max-max MCLP et le min-max MCLP. En matière de méthodes, formulations mathématiques, algorithmes exacts et heuristiques ont été développés et appliqués aux deux problèmes. Des expérimentations computationnelles ont montré que les algorithmes exacts ont permis de résoudre efficacement 14 des 75 instances générées par le min-max regret WSCP et toutes les instances réalistes pour le min-max regret MCLP. Pour les cas simulés qui n'ont pas été résolus de manière optimale dans les deux problèmes, les heuristiques développées dans cette thèse ont trouvé des solutions aussi bien ou mieux que le meilleur algorithme exact dans presque tous les cas. En ce qui concerne l'application en logistique des catastrophes, les modèles robustes ont trouvé des solutions similaires pour les scénarios réalistes des tremblements de terre qui a eu lieu à Katmandu au Népal en 2015. Cela indique que nous avons une solution robuste / Two robust optimization NP-Hard problems are studied in this thesis: the min-max regret Weighted Set Covering Problem (min-max regret WSCP) and the min-max regret Maximal Coverage Location Problem (min-max regret MCLP). The min-max regret WSCP and min-max regret MCLP are, respectively, the robust optimization counterparts of the Set Covering Problem and of the Maximal Coverage Location Problem. The uncertain data in these problems is modeled by intervals and only the minimum and maximum values for each interval are known. However, while the min-max regret WSCP is mainly studied theoretically, the min-max regret MCLP has an application in disaster logistics which is also investigated in this thesis. Two other robust optimization criteria were derived for the MCLP: the max-max MCLP and the min-max MCLP. In terms of methods, mathematical formulations, exact algorithms and heuristics were developed and applied to both problems. Computational experiments showed that the exact algorithms efficiently solved 14 out of 75 instances generated to the min-max regret WSCP and all realistic instances created to the min-max regret MCLP. For the simulated instances that was not solved to optimally in both problems, the heuristics developed in this thesis found solutions, as good as, or better than the exact algorithms in almost all instances. Concerning the application in disaster logistics, the robust models found similar solutions for realistic scenarios of the earthquakes that hit Kathmandu, Nepal in 2015. This indicates that we have got a robust solution, according to all optimization models

Page generated in 0.0947 seconds