• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Structure and reactivity of Lutetium bis -Phthalocyanine Thin Films / Structure et réactivité des phthalocyanine double de lutétium

Farronato, Mattia 16 October 2017 (has links)
Dans ce travail de thèse j’ai étudié la structure et la réactivité des couches minces des phthalocyanine de lutétium déposées sur des surfaces métalliques. La connaissance de la structure des couches minces épitaxées des matériaux organiques est importante pour la conception des dispositifs d’électronique organique. En effet la mobilité des porteurs de charge est très influencée par l’organisation moléculaire et l’ordre de la couche. La deuxième partie de ce travail concerne la réactivité des couches minces de ces molécules avec les gaz atmosphériques, ce qui est essentiel à la stabilité des dispositifs.Les couches minces ont étés préparées par évaporation thermique sous ultra vide et ont étés analysées par Microscopie a scansion de tunnel (STM), diffraction des rayons x (XRD), photoémission x (XPS) et Spectroscopie d’absorption x (NEXAFS). La structure des couches minces des LuPc2 déposées sur Au(111) a été trouvée. Les molécules adoptent une structure β et ressentent de l’effet modèle du substrat, comme prédit par les relations épitaxies. La morphologie de surface a été également trouvée à l’échelle moléculaire, y compris l’empillement et l’orientation des domaines.La faible réactivité de ces couches minces avec des gaz atmosphérique, en particulier oxygène et eau, a été prouvée. Le site d’absorption des molécules des gaz a été localisé non pas sur l’ion central mais plutôt sur le macrocycle organique. Il a été démontré aussi que ces molécules sont plus réactives vers l’oxygène moléculaire que vers l’eau. / In this thesis work I studied the structure and reactivity of Lutetium bis-phthalocyanine (LuPc2) thin films deposited on metallic surfaces. Knowing the structure of epitaxial organic thin films is important to design devices based on organic electronics, because carrier mobility, critically depends on the molecular configuration and thin film ordering. The second part of the work deals with the reactivity of molecular thin films towards atmospheric gases which is crucial for lifetime of the device. We chose LuPc2 because, due to the double decker molecular geometry they should present a different reactivity respect to single decker phthalocyanine, which are widely used in devices.The thin films were prepared by thermal evaporation under ultra-high vacuum conditions and analysed by means of Scanning Tunnelling Microscopy (STM) and X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS).We resolved the structure of a LuPc2 thin film deposited on Au(111), showing that the molecules adopt a β structure and demonstrated the templating effect of the substrate via the epitaxial relations with the overlayer. We then present the surface morphology at the molecular scale, including stacking and domain orientations.We tested the reactivity of these thin films towards atmospheric gases, in particular oxygen and water, showing a low reactivity and managing to demonstrate the adsorption sites, which are not the central cation, but rather on the macrocycle. We showed how oxygen is a greater threat to the film stability than water.
32

Carrier transport characterization and thin film transistor applications of amorphous organic electronic materials

Xu, Wenwei 01 January 2013 (has links)
No description available.
33

Self-Assembled Molecular Layers Comprising 'Donor-sigma-Acceptor' Architecture On Gold And ITO Surfaces : Design, Synthesis And Development Towards Novel Applications

Sarkar, Smita 07 1900 (has links) (PDF)
No description available.
34

Effect of dopants and gate dielectrics on charge transport and performance of organic thin film transistor

Chan, Yiu Him 01 January 2012 (has links)
No description available.
35

Deposition of model viruses on cellulose

Li, Zhuo, 1982- January 2008 (has links)
No description available.
36

Characterization and patterned polymer films from a novel self-assembly process

Liu, Yanjing 11 May 2006 (has links)
The layer-by-layer molecular-level manipulation of ionic polymer have been utilized to fabricate ultrathin multilayer films (SAMp). In this process, monolayers of polycations and polyanions are sequentially adsorbed onto a substrate surface by alternately dipping the substrate into aqueous solutions of poly(vinylamine) backbone azo (PDYE), poly(sodium 4-styrenesulfonate) (PSS), and poly(al1ylamine hydrochloride) (PAH). The ionic attractions developed between the oppositely charged polymers promote strong interlayer adhesion and a uniform and linear multilayer deposition process. UV/Vis absorbance, contact angle, and ellipsometry measurements revealed that in all cases the bilayer deposition process was linear and highly producible from layer to layer and film thickness of up to 1 µm can be easily obtained by repeating the deposition process. The typical thickness of bilayer film depend on the solution concentration. Contact angle and UV/Vis spectroscopy measurements demonstrated that the deposition time for a full monolayer coverage of azo dye and PAH was about 20 seconds. Our results showed that the mechanical stability of these SAMp films was remarkable, and SAMp films can only be removed from the substrate by scraping. SAMp films are stable in the common organic solvents and even in the high acidic media (6M HCl aqueous solution). The conformation of these films are thermally stable at high temperature. In an attempt to develop patterned surfaces of sulfonate and thiol functionality, close-packed, well-ordered (3-mercaptopropyl)trimethoxysilane (MPS) monolayer were formed on the surfaces of single crystal silicon, quartz, and glass by allowing hydrolyzed silane to self-assemble from a dilute hydrocarbon solution. The films of MPS were irradiated with an ozone-producing UV light source results in efficient conversion of the surface-localized thiol groups to sulfonated groups, a complete photo-oxidation of the thiol surface was obtained and characterized by x-ray photoelectron spectroscopy (XPS) and contact angle measurements. Sulfonated self-assembled films can be used as good organic templates for the deposition of SAMp films and for micropatterning of organic surfaces based on our results. Such results significantly extend the application of SAMp films since the sulfonate-functionalized surface can be introduced into the surfaces of aromatic polymers, metals, ceramics, semiconductors, and plastics. So that the process of SAMp deposition can be carried out onto many different substrate surfaces. The novel self-assembly technique combined with photolithography was used to develop three different methods of micropatterning fabrication in an attempt to achieve the goal of full-color flat-panel display. The characteristic of distinguishing our methods from the existed ones is that the patterning is done first and then the vertical multilayers were built-up on the patterned areas. Moreover, in this process, SAMp films were used as active species. Scanning Electron Microscopy (SEM) was employed to confirm the patterning technique. In order to block the further growth of the second film type on the sites of first film type, several molecules with inert function groups were tried. UV/Vis absorbance and contact angle measurements revealed that dodecyltrimethylammonium bromide (DTAB) atop the PAH/PSS SAMp film could prevent further adsorption of the ionic polymers. / Ph. D.
37

Organic Self-Assembled Thin Films for Second Order Nonlinear Optics

Gaskins, Kylie 12 August 2004 (has links)
With a growing demand in industry for cost effective, increased data handling capabilities great attention has been paid to the study of various polymer systems for use in optical telecommunications. Inorganic crystals, currently used in such systems, have high performance, but are more expensive and less obtainable than organic materials. Recent advances in techniques for developing highly efficient and inexpensive organic polymeric electro-optic (EO) devices compatible with current state-of-the-art electronics have created an interest in the commercialization of such electro-optic devices. In light of the many advantages of utilizing organic materials for electro-optic applications, numerous methods have been developed to produce nonlinear optically (NLO)-active polymeric films for such purposes. Ionic self-assembled multilayer (ISAM) films are a recently developed class of materials that allows detailed structural and thickness control at the molecular level, combined with ease of manufacturing and low cost. However, the layer-by-layer deposition technique utilized for this method currently requires lengthy processing times that challenge the feasibility of fabricating a thick film suitable for EO modulator device fabrication. This study focuses on addressing the influence of several pertinent processing variables affecting these challenges for application to electro-optic device fabrication. This study investigated (1) the effect of forced convection, varying deposition time and varying dye concentration on the properties of PAH/Procion Brown films fabricated via the hybrid reactive deposition scheme, (2) the automation and optimization of the fabrication of thick NLO active films and (3) the use of the hybrid covalent-electrostatic deposition scheme to fabricate a polymeric waveguide device with an electro-optic coefficient comparable to that of lithium niobate (LiNbO₃). At fixed deposition time and concentration conditions, the presence of convection had little demonstrated effect on films with deposition times shorter than 2 minutes. For the 5 minute case, the presence of convection correlated with a ~45% increase in Ï (2)zzz values values and a 25% increase in absorbance per bilayer. At a constant dye concentration of 5 mg/ml, the deposition time had little effect on SHG for deposition times less than two minutes. In the presence of convection, the increase in deposition time from 2 minutes to 5 minutes showed a 57% increase in Ï (2)zzz values and a 30% increase in absorbance per bilayer. For a deposition time of 2 minutes in the presence of convection, the dye solution concentration was successfully reduced 5-fold (from 5 mg/ml to 1 mg/ml) with less than a 5% difference in Ï (2)zzz values, less than a 15% decrease in absorbance per bilayer and no detriment to film quality. These results strongly indicate that the deposition conditions remain well outside of the transport-limited regime at a dye concentration of 1 mg/ml. Rather, the surface reaction rate apparently is controlling. Depositing slides at an elevated temperature (~35°C), had an undetermined effect on Ï (2)zzz values, but showed a 15% increase in absorbance per bilayer. An automatic dipper was programmed to replicate the current manual deposition method to fabricate a film suitable for EO modulator devices. Utilizing the optimal conditions for the processing variables, an optically-homogeneous, 100 nm-thick film was fabricated utilizing the automated process, yielding a Ï (2)zzz values~ 23 x 10⁻⁹ esu. A three-layer coplanar electro-optic device was fabricated utilizing the hybrid reactive deposition method. For this device, the presence of added salt was found to increase the electro-optic coefficient r33 by a factor of 3 compared to its value when made with no added salt. The electro-optic coefficient of the added salt case was found to be about 1/2 that of lithium niobate (LiNbO3). / Master of Science
38

Physics and engineering of organic solar cells

Potscavage, William J., Jr. 20 December 2010 (has links)
Organic solar cells have the potential to be portable power sources that are light-weight, flexible, and inexpensive. However, the highest power conversion efficiency for organic solar cells to date is ~8%, and most high-efficiency solar cells have an area of less than 1 cm². This thesis advances the field of organic solar cells by studying the physics and engineering of the devices to understand the reverse saturation current, which is related to efficiency, and the effects of area scaling. The most commonly accepted models to describe the physics of organic photovoltaic devices are reviewed and applied to planar heterojunction solar cells based on pentacene / C60 as a model system. The equivalent circuit model developed for inorganic solar cells is shown to work well to describe the behavior of organic devices and parameterize their current-voltage characteristics with five parameters. Changes in the parameters with different material combinations or device structures are analyzed to better understand the operation of the presented organic solar cells. A one-dimensional diffusion model for the behavior of excitons and treatment of the organic layers as planes is demonstrated to adequately model the external quantum efficiency and photocurrent in pentacene / C60 solar cells. The origin of the open-circuit voltage is studied using cells with different electrodes and different donor materials. While changing the electrodes does not affect open-circuit voltage, it is greatly modified by changes in the donor. Tests with additional semiconductors show the change in open-circuit voltage is not consistent from donor to donor as the acceptor is varied, suggesting a more complex relation than just the difference in energy levels. Study of the temperature dependence of the equivalent circuit parameters shows that the reverse saturation current, which has a significant role in determining the open-circuit voltage, has a thermally activated behavior. From this behavior, the reverse saturation current is related back to charge transfer at the donor / acceptor heterojunction to suggest that both the effective energy barrier presented by the energy levels and the electronic coupling are important in determining the reverse saturation current and open-circuit voltage. This marks a shift from just considering a built-in voltage or the energy levels to also considering the electronic coupling of the donor and acceptor materials. Temperature-dependent performance characteristics are also used to show key differences between organic and inorganic devices. Finally, the effect of area scaling is explored with pentacene / C60 solar cells having areas of 0.11, 7, and 36.4 cm². Analysis with the equivalent circuit model shows that performance decreases as area increases because of an increasing series resistance presented by the transparent electrode. A metal grid, to provide low resistance pathways for current, fabricated on top of the transparent electrode is proposed to reduce the effective resistance. The grid is unique in that it is placed between the electrode and the semiconductor layer and must be passivated to prevent shorts through the thin semiconductor to the back metal electrode. Analysis of the grid predicts greatly reduced series resistance, and experimental results show reduced resistance and improved performance for the 7 cm² and 36.4 cm² devices when including the grid.
39

Novel Organic Heterostructures Enabled by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE)

McCormick, Ryan January 2014 (has links)
<p>An explosion in the growth of organic materials used for optoelectronic devices is linked to the promise that they have demonstrated in several ways: workable carrier mobilities, ease of processing, design flexibility to tailor their optical and electrical characteristics, structural flexibility, and fabrication scalability. However, challenges remain before they are ready for prime time. Deposition of these materials into ordered thin films requires that they be cast from solutions of organic solvents. Drawbacks of solution-casting include the difficulty of producing layered films without utilizing orthogonal solvents (or even with orthogonal solvents), the difficulty in controlling domain sizes in films of mixed materials, and the lack of parameter options used to control the final properties of thin films. Emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a thin film deposition technique that is demonstrated to provide solutions to these problems.</p><p>This work presents fundamental research into the RIR-MAPLE process. An investigation of the molecular weight of deposited materials demonstrates that emulsion-based RIR-MAPLE is capable of depositing polymers with their native molecular weights intact, unlike other laser deposition techniques. The ability to deposit multilayer films with clearly defined interfaces is also demonstrated by cross-sectional transmission electron microscopy imaging of a layered polymer/quantum dot nanocomposite film. In addition, trade-offs related to the presence of surfactant in the target, required to stabilize the emulsion, are articulated and investigated by x-ray diffraction, electrical, optical, and surface characterization techniques. These studies show that, generally speaking, the structural, optical and electrical properties are not significantly affected by the affected by the presence of surfactant, provided that the concentration within the target is sufficiently low. Importantly, the in-plane mobility of RIR-MAPLE devices, determined by organic field effect transistor (OFET) characterization, rivals that of spin-cast devices produced under similar conditions. </p><p>This work also presents results of emulsion-based RIR-MAPLE deposition applied to optical coatings (gradient-refractive index antireflection coating based on porous, multilayer films) and optoelectronic devices (organic photovoltaics based on the polymer, P3HT, and small molecule, PC61BM, bulk heterojunction system). The optical coating demonstrates that RIR-MAPLE is capable of producing nanoscale domain sizes in mixed polymer blends that allow a film to function as an effective medium relevant to devices in the visible spectrum. Moreover, bulk heterojunction organic photovoltaic (OPV) devices that require nanoscale domains to function effectively are achieved by co-deposition of P3HT and PC61BM, achieving a power conversion efficiency of 1.0%, which is a record for MAPLE-deposited devices. </p><p>Results of these studies illuminate unique capabilities of the RIR-MAPLE process. Multilayer films are readily fabricated to create true bilayer OPV structures. Additionally, true gradient thin films are created by varying the ratio of two materials, including two-polymer films and a film consisting of a polymer and a small molecule, over the course of a single deposition.</p> / Dissertation
40

A simple organic solar cell

Whyburn, Gordon Patrick January 2007 (has links)
Finding renewable sources of energy is becoming an increasingly important component of scientific research. Greater competition for existing sources of energy has strained the world’s supply and demand balance and has increased the prices of traditional sources of energy such as oil, coal, and natural gas. The experiment discussed in this paper is designed to identify and build an inexpensive and simple method for creating an effective organic solar cell.

Page generated in 0.0867 seconds