Spelling suggestions: "subject:"arganic transistor"" "subject:"0rganic transistor""
1 |
Dynamic response of polycrystalline organic thin film transistorsCobb, Brian Hardy, 1982- 07 January 2011 (has links)
In this dissertation, charge transport through organic field effect transistors is explored. In particular, small molecule-based devices consisting of Pentacene semiconducting thin films are investigated. The relationship between electric field and carrier velocity is explored over a wide range of electric fields. These velocities are then compared to directly measured velocities measured from transient measurements.
New device structures are fabricated in order to provide low voltage operation, along with a method to stabilize the output response and reduce bias stress effects. A novel method is proposed to investigate the dynamics of trap response rate in highly localized systems through the characterization of the large signal frequency response of a
vii
device. This method is then used to gain greater insight into bias stress effects and the ability of a transistor to respond to a rapidly changing input.
A greater understanding of the transport of charge through a channel is obtained, leading to a more realistic picture in which a single mobility value is an insufficient description of carrier transport through a material. / text
|
2 |
Développement d’une méthode de mesure du potentiel de surface par AFM pour composants électroniques en fonctionnement, application aux transistors organiques / Surface potential measurements of biased devices using Kelvin force probe microscopy applied to thin film organic transistorsDe tournadre, Grégoire 28 June 2016 (has links)
Au cours de cette thèse, une technique de mesure du potentiel de surface par AFM (KPFM) a été développée et exploitée. Elle permet la caractérisation locale et quantitative de transistors organiques (OTFT) polarisés à plusieurs dizaines de volts, en condition ambiante. Cependant tout type de composants polarisés dont la surface est accessible peut être étudié. La méthode a été utilisée de façon complémentaire à l’étude conventionnelle des caractéristiques courant-tension des transistors et à la simulation, elle contribue ainsi à une meilleure compréhension des mécanismes de transport et d’injection des porteurs dans les OTFT. Nous avons étudié des transistors en structure empilée ou planaire et à base de semi-conducteurs variés (PTAA, DNTT, P3HT). Nous avons obtenu des caractéristiques courant-tension intrinsèques du contact de source, ohmique ou non-linéaire, suivant les cas. Les résultats sont 10 fois plus précis qu’avec la méthode dite « transmission line method (TLM) » et permettent d’étudier chaque transistor individuellement. La modélisation des contacts s’est appuyée sur l’implémentation du modèle d’injection d’Arkhipov dans un simulateur quasi-2D. Une nouvelle méthode de mesure de la mobilité et de la tension de seuil à partir des profils de potentiel a été introduite. Nous avons ainsi mesuré la mobilité du canal indépendamment des effets des contacts. Etonnamment la mobilité a été trouvée indépendante du champ électrique et de la densité de charges pour tous les OTFT étudiés. Enfin l’analyse des profils de potentiel dans le canal a mis en lumière des effets inattendus comme une diminution de la mobilité proche des contacts ou une évolution de la tension de seuil. / In this work, a surface potential measurement technique based on the Kelvin Force Probe Microscopy (KPFM), has been developed and applied to operating electronic devices. Potential profiles in the channel of organic transistors operated under high voltage (>10V) have been measured under ambient conditions. This original technique was used together with conventional current-voltage characterization and numerical simulation to gain a better understanding of carrier injection and transport properties in organic thin film transistors (TFTs). Various TFT structures and materials were studied (PTAA, DNTT, P3HT). The source intrinsic current-voltage characteristic was found either linear or non-linear depending on the device technology. Contact resistance measurements are 10 times more accurate than using the conventional « transmission line method» (TLM), and allow individual TFT characterization. Contact modeling was carried out using a quasi-2D numerical model, including an injection model from Arkhipov, and compared to measurements. New mobility and threshold voltage measurement methods, extracted from the KPFM potential profiles, are introduced. The KPFM measured channel mobility does not suffer from any contact influence. Surprisingly, the channel mobility was also found independent from the carrier concentration and from the electric field, on all the measured devices. Finally, unexpected effects could be evidenced from the potential profiles on some TFT structures: a reduction of the channel mobility occurs close to the contacts in some planar structures, and a shift of the threshold voltage was observed in staggered devices.
|
3 |
Zustandsdichte im OPBTIseke, Henning 09 May 2019 (has links)
Die elektronische Zustandsdichte ist die grundlegende Größe zum Verständnis von Ladungstransportprozessen in Materialien. In der vorliegenden Arbeit wird eine Methode zur Bestimmung dieser Dichte, die für organische Feldeffekttransistoren (OFET) vorgeschlagen wurde, für organischen Transistoren mit durchlässiger Basis (OPBT) adaptiert. Dabei wird aus temperaturabhängigen Transferkurven die Aktivierungsenergie für den Emitterstrom bestimmt und aus deren Spannungsabhängigkeit die Zustandsdichte abgeleitet. Es wird gezeigt, dass die Anwendung der Methode bei OPBTs unter bestimmten Voraussetzungen möglich ist. Die Qualität der Resultate hängt vom jeweiligen Transistor ab. Ein homogeneres und dickeres Basisoxid, wie es durch Anodisierung der Basiselektrode entsteht, wirkt sich positiv auf die Qualität aus. Die bestimmten Zustandsdichten liegen abhängig vom konkreten Transistor im Bereich 10^18 eV^−1 cm^−3…10^20 eV^−1 cm^−3 in einem Energiebereich von 200 meV. Die Form der Verteilung ist näherungsweise exponentiell mit einer Breite von etwa 4 meV.:1 Einleitung
2 Grundlagen
2.1 Organische Halbleiter
2.1.1 Organische Moleküle und Festkörper
2.1.2 Ladungstransport
2.1.3 Modelle und Konzepte
2.1.4 C60
2.2 Organische Transistoren
2.3 Organischer Transistor mit durchlässiger Basis
2.3.1 Geometrie
2.3.2 Zustände und Transferkurvenabschnitte
2.3.3 Energiediagramm
2.3.4 Anodisierung
2.3.5 Chemische und elektrische Belastung
2.4 Zustandsdichte
2.4.1 Modelle
2.4.2 Zustandsdichtebestimmung
3 Experiment
3.1 Transistoren
3.1.1 Herstellung
3.1.2 Anodisierung
3.2 Temperaturabhängige Transferkurven
3.2.1 Wahl der Parameter
3.2.2 Auswertung der Daten
3.3 Belastungstests und Parametervariation
3.4 Kapazitätsmessung
4 Auswertung
4.1 Bestimmung der Aktivierungsenergie
4.2 Bestimmung der Zustandsdichte
4.2.1 Anwendbarkeit und Zuverlässigkeit
4.2.2 Wahl der Kanaldicke
4.2.3 Kapazitätsbestimmung
4.3 Auswirkung der Anodisierung
4.4 Auswirkung von elektrischer und chemischer Belastung
4.5 Einfluss der Halbleiterschichtdicke
5 Diskussion
5.1 Schlussfolgerungen
5.2 Ausblick
A Messdaten / The electronic density of states (DOS) is a fundamental quantity which allows a deeper understanding of charge transport processes in materials. In this thesis, a method proposed for organic field-effect transistors (OFET) will be adapted to organic permeable-base transistors (OPBT). The DOS is extracted from
temperature dependent transfer curves by determining the activation energy and calculating its derivative with respect to the applied voltage. It is shown that the application of this method to OPBTs is possible under certain circumstances. The quality of the results depends on the transistor. A more homogeneous and
thicker base oxide created by anodization results in a better quality. The resulting DOS lies in the range of 10^18 eV^−1 cm^−3…10^20 eV^−1 cm^−3 in an energy interval of 200 meV. The shape of the DOS is approximately exponential with a width of 4 meV.:1 Einleitung
2 Grundlagen
2.1 Organische Halbleiter
2.1.1 Organische Moleküle und Festkörper
2.1.2 Ladungstransport
2.1.3 Modelle und Konzepte
2.1.4 C60
2.2 Organische Transistoren
2.3 Organischer Transistor mit durchlässiger Basis
2.3.1 Geometrie
2.3.2 Zustände und Transferkurvenabschnitte
2.3.3 Energiediagramm
2.3.4 Anodisierung
2.3.5 Chemische und elektrische Belastung
2.4 Zustandsdichte
2.4.1 Modelle
2.4.2 Zustandsdichtebestimmung
3 Experiment
3.1 Transistoren
3.1.1 Herstellung
3.1.2 Anodisierung
3.2 Temperaturabhängige Transferkurven
3.2.1 Wahl der Parameter
3.2.2 Auswertung der Daten
3.3 Belastungstests und Parametervariation
3.4 Kapazitätsmessung
4 Auswertung
4.1 Bestimmung der Aktivierungsenergie
4.2 Bestimmung der Zustandsdichte
4.2.1 Anwendbarkeit und Zuverlässigkeit
4.2.2 Wahl der Kanaldicke
4.2.3 Kapazitätsbestimmung
4.3 Auswirkung der Anodisierung
4.4 Auswirkung von elektrischer und chemischer Belastung
4.5 Einfluss der Halbleiterschichtdicke
5 Diskussion
5.1 Schlussfolgerungen
5.2 Ausblick
A Messdaten
|
4 |
Transistores orgânicos ultracompactos produzidos por autoenrolamento de nanomembranas / Low-voltage, flexible, and self-encapsulated ultracompact organic thin-film transistors based on nanomembranesTorikai, Kleyton 04 December 2018 (has links)
Submitted by Kleyton Torikai (kleyton.torikai@gmail.com) on 2019-01-28T20:34:40Z
No. of bitstreams: 1
kleyton_dissertacao_finalv2.pdf: 9722270 bytes, checksum: 2a886af434c5689660841438b2412e23 (MD5) / Rejected by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
1 - Inserir logo após a folha de rosto a ficha catalográfica, pois é um ítem obrigatório.
Agradecemos a compreensão on 2019-01-29T10:56:24Z (GMT) / Submitted by Kleyton Torikai (kleyton.torikai@gmail.com) on 2019-01-29T14:41:56Z
No. of bitstreams: 1
kleyton_dissertacao_finalv3_submetida.pdf: 9782713 bytes, checksum: 3775eee15d15983b2b404989e8170b7b (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2019-01-30T12:02:31Z (GMT) No. of bitstreams: 1
torikai_K_me_bauru.pdf: 9782713 bytes, checksum: 3775eee15d15983b2b404989e8170b7b (MD5) / Made available in DSpace on 2019-01-30T12:02:31Z (GMT). No. of bitstreams: 1
torikai_K_me_bauru.pdf: 9782713 bytes, checksum: 3775eee15d15983b2b404989e8170b7b (MD5)
Previous issue date: 2018-12-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A eletrônica orgânica mostrou-se comercialmente viável e competitiva, já sendo integrada em diversas tecnologias, e.g., displays flexíveis de OLED, painéis solares de grande área, dispositivos biocompatíveis/vestíveis, entre outras. A utilização de materiais orgânicos na fabricação de dispositivos eletrônicos explora vantagens como: flexibilidade mecânica, baixas temperaturas de processamento e possibilidade de se implementar melhorias e ajustes por meio de sínteses químicas. Entretanto, a eletrônica inorgânica já bem estabelecida ainda se destaca na área da eletrônica robusta, uma vez que os semicondutores orgânicos (OSCs) são bastante suscetíveis a condições mais extremas, como exposição a gases e radiação. Nesse sentido, a tecnologia de nanomembranas autoenroladas (NM) tem mostrado, nos últimos anos, um grande potencial na fabricação de dispositivos híbridos ultracompactos em uma arquitetura inédita para transistores orgânicos de filmes finos (OTFTs). A partir das técnicas tradicionais de microfabricação—fotolitografia, deposição de filmes finos—fabricou-se OTFTs sobre NMs que, uma vez liberadas do substrato através da remoção sistemática de uma camada de sacrifício, remodelam os dispositivos em uma arquitetura tubular tridimensional, reduzindo a área ocupada em aproximadamente 90% e protegendo os OSCs da área ativa do OTFT entre as múltiplas voltas das NMs. Assim, mostrou-se que a arquitetura confere novas propriedades aos OTFTs sem prejudicar as propriedades elétricas, suportando centenas de ciclos de compressão mecânica e mostrando-se resistentes a radiação ultravioleta e a vapores agressivos, como a amônia. Por fim, para validar a arquitetura de OTFT inédita, mostra-se que a estratégia utilizada é válida para diferentes OSCs e pode ser utilizada na fabricação de circuitos eletrônicos mais complexos a partir da associação de múltiplos dispositivos, como o inversor aqui apresentado. / In the recent years, the organic electronics’ commercial viability and competitiveness became apparent, integrating a diversity of technologies, e.g., OLED flexible displays, large-area solar panels and biocompatible and wearable devices. The manufacturing of electronic devices with organic materials aims at exploiting inherent characteristics— mechanical flexibility, low processing temperatures and the potential of boosting and tailoring specific properties through chemical synthesis. However, there’s still a gap between the well-established inorganic and the organic electronics concerning applications on rugged electronics, since the organic semiconductors (OSCs) are very susceptible to harsh conditions, e.g., exposition to UV radiation and gases. In this sense, recent advances on strained nanomembrane (NM) technology has shown enormous potential in the manufacturing of hybrid ultracompact devices in a novel organic thin-film transistor (OTFT) architecture. Through traditional microfabrication techniques—photolithography, thin-film deposition—OTFTs were fabricated on top of strained NMs, which promotes a reshaping of the devices into a 3D tubular architecture when released from the substrate. This process promotes a reduction in about 90% of the footprint area while protecting the OSC in the active area in between the multiple device windings. Therefore, the OTFTs have been endowed with new proprieties without loss of electric performance, while enduring hundreds of mechanical compression cycles and showing increased resilience against UV radiation and hazardous vapors, such as ammonia. Finally, to validate this novel OTFT architecture, this strategy has been shown to be valid for different OSCs and can be used to manufacture electronic circuits through the association of multiple devices, such as the inverter reported in this study. / CAPES: Código de financeamento 001 / FAPESP: Jovem Pesquisador 2014/25979-2
|
5 |
Ambipolar organic permeable base transistorsKaschura, Felix, Fischer, Axel, Kasemann, Daniel, Leo, Karl 10 September 2019 (has links)
Organic transistors with vertical current transport like the Permeable Base Transistor (PBT) show a high performance while allowing for an easy fabrication on the device level. For a simple implementation on a circuit level, ambipolar transistors, providing the functionality of n-type as well as p-type devices, have a benefit for complementary logic. This requires transistors where electrons and holes are present. Here, we investigate a potential concept of bipolar current transport in PBTs. In our device structure, we use the base electrode to control the current flow, but also to investigate the charge carrier transport. The ambipolar organic PBT achieves a charge carrier transmission of 88% and a current density above 200mA=cm². Additionally, we show that recombination near the base is required in an ambipolar PBT for a good performance.
|
6 |
A Vertical C60 Transistor with a Permeable Base Electrode / Ein vertikaler C60-Transistor mit einer permeablen BasiselektrodeFischer, Axel 26 October 2015 (has links) (PDF)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range.
The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents.
The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance.
Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations. / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus.
Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt.
Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden.
Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.
|
7 |
Synthèse et caractérisation de semi-conducteurs organiques pour des applications optoelectroniques et capteursAboubakr, Hecham 22 November 2012 (has links)
Le travail rapporté dans ce mémoire de thèse concerne la synthèse et la caractérisation de nouveaux semi-conducteurs organiques basés sur un coeur bithiophène. Ce travail s'inscrit dans le prolongement de précédents travaux réalisés au laboratoire portant sur des dérivés du type distyryl-oligothiophènes. Au cours de ce travail, plusieurs voies de synthèse ont été développées afin de fonctionnaliser un coeur bithiophène, rigide ou non, avec différents groupements fonctionnels, principalement pour trois types d'applications : (i) la réalisation de transistors à base de couche mince organique (OFETs), (ii) l'élaboration de cellules solaires à partir de composés push-pull et (iii) le développement de capteurs. Le premier chapitre est consacré à la fonctionnalisation du benzo-[2,1-b:3,4-b']dithiophène-4,5-dione soit par des groupements mésogéniques soit par des motifs aminostyryles. L'objectif est la possibilité de préparer des OFETs par la voie liquide et de tirer profit des propriétés cristal liquide pour améliorer les performances électriques. Les propriétés cristal liquides ont été décrites, et les transistors réalisés. Malheureusement aucune mobilité de porteur de charge n'a pu être enregistrée. Dans un deuxième temps, des modifications structurales ont été apportées sur certaine des structures synthétisées afin d'améliorer les propriétés recherchées. Toutefois, au moment de la rédaction de ce manuscrit, les OFETs n'étaient pas réalisés. Dans le deuxième chapitre, de nouvelles molécules push-pull de type cruciformes ont été synthétisées dans le but d'évaluer leurs performances en tant que composés organiques actifs dans des dispositifs photovoltaïques. / The work reported herein concerns the synthesis and the characterization of new organic semiconductors built around the bithiophene core. It was relied on an extended work carried out previously in our laboratory on distyryloligothiophene derivatives. The main part of this work was dedicated to develop new functionalized organic semi-conductors with the aim to improve their properties for optoelectronic applications, mainly for: i) the realization of transistors with organic thin layer (OFETs), ii) the elaboration of solar cells from push-pull derivatives and iii) the development of sensors. The first chapter is devoted to the functionalization of the benzo-[2,1-b:3,4-b ']bithiophene-4,5-dione core either by mesogenic or aminostyryl groups with the purpose to improve, using liquid crystal properties, the microscopic ordering and the electrical performances of the synthetized organic semiconductors as well as their solution processability. Besides the liquid crystal properties characterization showing interesting behavior, the OFET devices have been made from those semiconductors but unfortunately have led to, as unexpected, poor charge transport properties. Some structural modifications have been done in order to optimize the charge transport characteristics nevertheless their electrical characterization still under progress up to now. In a second part, some push-pull derivatives, having a cruciform-like structure, have been synthetized and characterized in order to use them as an active organic layer in photovoltaic devices. Their optoelectronic properties have been evaluated and reported.
|
8 |
Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic TransistorsManuelli, Alessandro 11 January 2007 (has links) (PDF)
The discovery of conducting and semiconducting polymers has opened the possibility to produce
integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays
several of this polymers are commercial available, however the performances of this materials are
strongly affected by their supramolecular order achieved after deposition. In this research, the
influence of some standard printing techniques on the electrical performances of conjugated
polymers is evidenced in order to realise logic devices with these materials.
|
9 |
Influences of Printing Techniques on the Electrical Performances of Conjugated Polymers for Organic TransistorsManuelli, Alessandro 20 July 2006 (has links)
The discovery of conducting and semiconducting polymers has opened the possibility to produce
integrated circuits entirely of plastic with standard continuous printing techniques. Nowadays
several of this polymers are commercial available, however the performances of this materials are
strongly affected by their supramolecular order achieved after deposition. In this research, the
influence of some standard printing techniques on the electrical performances of conjugated
polymers is evidenced in order to realise logic devices with these materials.
|
10 |
A Vertical C60 Transistor with a Permeable Base ElectrodeFischer, Axel 11 September 2015 (has links)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range.
The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents.
The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance.
Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations.:CONTENTS
Publications, patents and conference contributions 9
1 Introduction 13
2 Theory 19
2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24
2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26
2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42
2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57
2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Organic transistors 65
3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76
3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82
3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85
3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87
3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88
3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94
3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95
4 Experimental 101
4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110
4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121
5 Introduction of C60 VOTs 123
5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Effect of annealing 141
6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142
6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153
6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159
6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7 Working Mechanism 167
7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173
7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181
7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8 Optimization of VOTs 183
8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9 Self-heating in organic semiconductors 209
9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216
9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218
9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10 Conclusion and Outlook 227
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A Appendix 233
A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233
A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236
A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239
A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241
List of Figures 245
References 290 / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus.
Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt.
Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden.
Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.:CONTENTS
Publications, patents and conference contributions 9
1 Introduction 13
2 Theory 19
2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24
2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26
2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42
2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57
2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61
3 Organic transistors 65
3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76
3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79
3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82
3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85
3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87
3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88
3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94
3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95
4 Experimental 101
4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108
4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110
4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121
5 Introduction of C60 VOTs 123
5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Effect of annealing 141
6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142
6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153
6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159
6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7 Working Mechanism 167
7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173
7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181
7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8 Optimization of VOTs 183
8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9 Self-heating in organic semiconductors 209
9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216
9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218
9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10 Conclusion and Outlook 227
10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A Appendix 233
A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233
A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236
A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239
A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241
List of Figures 245
References 290
|
Page generated in 0.0903 seconds