• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dépôt de films minces de poly(méthacrylates) par iCVD : des mécanismes de croissance à la Polymérisation Radicalaire Contrôlée / Synthesis of poly(methacrylates) thin films by iCVD : from growth mechanism to Reversible-deactivation Radical Polymerization

Van-Straaten, Manon 20 September 2019 (has links)
Les récentes avancées dans les micros et nanotechnologies ont nécessité le développement de nouvelles techniques de synthèse de films minces de nouveaux matériaux. Parmi eux, les polymères possèdent des propriétés intéressantes, notamment pour des domaines comme la microélectronique ou le biomédical. Pour pallier ce besoin, les techniques de dépôt de vapeur chimique (Chemical Vapor Deposition, CVD) se sont multipliées. Ces travaux portent sur la synthèse de couches minces de poly(méthacrylates) par un une nouvelle méthode de dépôt chimique en phase vapeur par une polymérisation amorcée in-situ ou initiated Chemical Vapor Deposition (iCVD). Cette technique possède de nombreux avantages parmi lesquels se trouvent ses conditions opératoires douces (absence de solvant, emploi de faibles températures), sa versatilité et sa conformité. Afin de mieux comprendre le procédé de synthèse des films minces de polymères par iCVD, une partie de ces travaux de thèse concerne l’étude de la cinétique de croissance des poly(méthacrylates). Une cinétique en deux régimes a été identifiée pour les deux polymères. Les analyses microscopiques et macroscopiques de couches minces issues des deux régimes ont permis la proposition d’un modèle de croissance. Le premier régime, au début de la croissance, est caractérisé par une faible vitesse de dépôt et des polymères de faibles masses molaires. Lorsque le second régime est atteint, la vitesse de dépôt est plus importante et devient constante. Les chaînes synthétisées possèdent des masses molaires plus élevées. Ce changement a pu être expliqué en mettant en avant la capacité du film en formation à se gorger de monomères, ce qui augmente la concentration locale de monomères. La cinétique de croissance des poly(méthacrylates) a aussi été étudiée sur des sous-couches de polymères et d’organosiliciés poreux. L’iCVD s’est révélée être une méthode capable de remplir de manière quasiment instantanée les pores nanométriques d’une couche mince. De plus, pour obtenir un meilleur contrôle des polymères synthétisés par iCVD au niveau de leur architecture macromoléculaire ou de leur masse molaire, la mise en place d’une technique de polymérisation radicalaire contrôlée est discutée. La dernière parte de cette thèse concerne l’application du procédé de polymérisation RAFT (polymérisation radicalaire par transfert de chaînes réversible par addition/fragmentation) en iCVD à l’aide de coupons de silicium fonctionnalisés au préalable avec des agents RAFT / Recent progress in micro and nanotechnologies require the development of new synthesis process for various material thin films. Polymers, thanks to their properties, are very interesting for fields like microelectronic or biomedical. To respond to this need, many Chemical Vapor Deposition (CVD) technologies are studied. This work focuses on a new method called initied Chemical Vapor Deposition (iCVD). This deposition method gives many advantages as its soft operational conditions (solvent free, low temperature), versatility and conformity. In order to improve the understanding of synthesis mechanism in iCVD, the first part of this work is about the poly(methacrylates) thin films growth kinetic. The study reveals two-regime growth kinetics. A model for the growth mechanism based on the microscopic and macroscopic analysis of thin layers from the two regimes is proposed. The first regime, at the early stage of the growth, is characterized by a slow deposition rate and polymers with low molecular mass. When the second regime appears, the deposition rate is higher and constant and polymers have higher molecular mass. These evolutions could to be explain by the growth film ability to stock monomers and thus increase the local monomer concentration. Poly(methacryaltes) growth kinetics are also investigated on polymeric and porous organosilicate layers. It appears than iCVD is a deposition method that can fill nanometrics pores with polymer really quickly. Moreover, to have a better control on polymer synthesized by iCVD (molecular weight, macromolecular architecture), the possibility to used a Reversible-Deactivation Radical Polymerization (RDRP) method with iCVD process is discussed. The last part of this work concerns the use of Reversible Addition Fragmentation chain Transfer (RAFT) polymerization with the iCVD process thanks to silicon samples pre-functionalized with RAFT agent
2

Surface modification of Li(Ni0.6Mn0.2Co0.2)O2 by plasma deposition for compatibility with aqueous processing

Tomassi, Erica 05 1900 (has links)
Les batteries lithium-ion dépendent de l’utilisation d’électrodes composites positives, traditionnellement préparées avec des liants fluorés tels que le polyfluorure de vinylidène (PVDF). Ceux-ci sont souvent dissouts ou dispersés dans des solvants toxiques et inflammables. Les interdictions récentes des substances per- et polyfluoroalkyles (PFAS), qualifiées de polluants éternels, imposent le développement d'alternatives durables pour atténuer les dommages environnementaux supplémentaires. La carboxyméthylcellulose (CMC) est une alternative prometteuse aux liants à base de PFAS car elle est biosourcée, biodégradable et soluble dans l'eau. Cependant, le processus d'utilisation d'un liant aqueux durable de CMC avec un matériau actif sensible à l'humidité, Li(Ni0.6Mn0.2Co0.2)O2, NMC622, dans une électrode composite positive présente un grand défi. Une avancée notable est l'application d'un revêtement protecteur qui peut être appliqué directement sur la surface des particules du matériau actif à l'aide d'un jet de plasma à pression atmosphérique (APPJ). Dans cette étude, l'APPJ a été utilisé pour déposer un revêtement organosilicié sur les particules de NMC622. Les particules de NMC enrobées ont subi des tests chimiques et électrochimiques rigoureux pour déterminer leur composition chimique et leur microstructure modifiée. Bien que ces résultats soient prometteurs, la performance électrochimique, mesurée par la capacité spécifique, la densité énergétique, l’efficacité coulombique, la stabilité cyclique, la durée de vie et la stabilité mécanique, n’est pas optimale, possiblement en raison de la dégradation préalable du matériau actif et d’une couverture inhomogène. Les particules enrobées ont connu un degré de protection contre l'exposition à l'humidité, aux électrolytes courants et aux environnements aqueux. La présence du revêtement s'est avérée préserver la microstructure des particules sans avoir d'impact significatif sur les propriétés électrochimiques du matériau, telles que la capacité spécifique et l’efficacité coulombique. / Lithium-ion batteries rely on the use of positive composite electrodes, which are traditionally prepared using fluorinated binders such as polyvinylidene fluoride (PVDF). These are often dissolved or dispersed in toxic and flammable solvents. Recent bans on ‟forever chemicals” per- and polyfluoroalkyl substances (PFAS) impose the development of sustainable alternatives to mitigate further environmental damage. Carboxymethyl cellulose (CMC) is a promising alternative to PFAS-based binders as it is bio-sourced, bio-degradable, and water-soluble. However, the process of using a sustainable CMC aqueous binder with a humidity sensitive active material, Li(Ni0.6Mn0.2Co0.2)O2, NMC622, in a positive composite electrode is challenging. One notable advancement is the application of a protective coating that can be applied directly on the active material particles surface using atmospheric pressure plasma jet (APPJ). In this study, the APPJ was used to deposit an organosilicon coating onto NMC622 particles. The coated NMC particles underwent rigorous chemical and electrochemical testing to determine the chemical composition, and microstructure of the modified particles. Despite promising indications, the electrochemical performance, measured by specific capacity, energy density, coulombic efficiency, cycling stability, lifetime and mechanical stability, is not optimal due possibly to the priori degraded active material and inhomogeneous coverage. The coated particles experienced a degree of protection from exposure to humidity, common electrolytes, and aqueous environments. The presence of the coating was found to preserve particle microstructure without having a significant impact on the electrochemical properties of the material, such as specific capacity and coulombic efficiency.

Page generated in 0.0472 seconds