• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 15
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 117
  • 38
  • 36
  • 30
  • 26
  • 26
  • 23
  • 23
  • 23
  • 21
  • 21
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Analysis of Flow Structures in Wake Flows for Train Aerodynamics

Muld, Tomas W. January 2010 (has links)
<p>Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that for high-speed passenger trains the largestslipstream velocities occur in the wake. Therefore the work in this thesis isdevoted to wake flows. First a test case, a surface-mounted cube, is simulatedto test the analysis methodology that is later applied to a train geometry, theAerodynamic Train Model (ATM). Results on both geometries are comparedwith other studies, which are either numerical or experimental. The comparisonfor the cube between simulated results and other studies is satisfactory, whiledue to a trip wire in the experiment the results for the ATM do not match.The computed flow fields are used to compute the POD and Koopman modes.For the cube this is done in two regions of the flow, one to compare with a priorpublished study Manhart & Wengle (1993) and another covering more of theflow and especially the wake of the cube. For the ATM, a region containing theimportant flow structures is identified in the wake, by looking at instantaneousand fluctuating velocities. To ensure converged POD modes two methods toinvestigate the convergence are proposed, tested and applied. Analysis of themodes enables the identification of the important flow structures. The flowtopologies of the two geometries are very different and the flow structures arealso different, but the same methodology can be applied in both cases. For thesurface-mounted cube, three groups of flow structures are found. First groupis the mean flow and then two kinds of perturbations around the mean flow.The first perturbation is at the edge of the wake, relating to the shear layerbetween the free stream and the disturbed flow. The second perturbation isinside the wake and is the convection of vortices. These groups would then betypical of the separation bubble that exists in the wake of the cube. For theATM the main flow topology consists of two counter rotating vortices. Thiscan be seen in the decomposed modes, which, except for the mean flow, almostonly contain flow structures relating to these vortices.</p> / QC 20100518 / Gröna Tåget
72

An integrated method for the transient solution of reduced order models of geometrically nonlinear structural dynamic systems

Lülf, Fritz Adrian 05 December 2013 (has links) (PDF)
For repeated transient solutions of geometrically nonlinear structures the numerical effort often poses a major obstacle. Thus, the introduction of a reduced order model, which takes the nonlinear effects into account and accelerates the calculations considerably, is often necessary.This work yields a method that allows for rapid, accurate and parameterisable solutions by means of a reduced model of the original structure. The structure is discretised and its dynamic equilibrium described by a matrix equation. The projection on a reduced basis is introduced to obtain the reduced model. A comprehensive numerical study on several common reduced bases shows that the simple introduction of a constant basis is not sufficient to account for the nonlinear behaviour. Three requirements for an rapid, accurate and parameterisable solution are derived. The solution algorithm has to take into account the nonlinear evolution of the solution, the solution has to be independent of the nonlinear finite element terms and the basis has to be adapted to external parameters.Three approaches are provided, each responding to one requirement. These approaches are assembled to the integrated method. The approaches are the update and augmentation of the basis, the polynomial formulation of the nonlinear terms and the interpolation of the basis. A Newmark-type time-marching algorithm provides the frame of the integrated method. The application of the integrated method on test-cases with geometrically nonlinear finite elements confirms that this method leads to the initial aim of a rapid, accurate and parameterisable transient solution.
73

Experimental investigation on the flow characteristics of three-dimensional turbulent offset jets

Nyantekyi-Kwakye, Baafour 26 August 2016 (has links)
An experimental study was designed to investigate the effect of different parameters on the development and structure of turbulent 3D offset jets. The present investigation considered the effects of offset height ratio, expansion ratio, surface roughness and rib placement on the flow dynamics of a turbulent 3D offset jet. The velocity measurements were performed using an acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV). Measurements were conducted within the symmetry and lateral planes. For the PIV technique, the measurements in the symmetry and lateral planes were conducted over a streamwise range of 0 ≤ x/bo ≤ 80 and 12 ≤ x/bo ≤ 60, respectively (where bo is the nozzle height). Likewise, velocity measurements using the ADV technique were conducted over a range of 4 ≤ x/bo ≤ 45 in both the symmetry and lateral planes. The velocity measurements were analyzed using both one-point and multi-point statistics. The one-point statistics included profiles of the mean velocities, Reynolds stresses and some of the budget terms in the turbulent kinetic energy transport equation. The quadrant analysis technique was used to investigate the dominant events that contribute towards the Reynolds shear stress. The two-point correlation analysis was used to investigate how the turbulence quantities are correlated. Information obtained from the two-point correlation analysis was also used to investigate the inclination of vortical structures within the inner and outer shear layers of the 3D offset jet. The direction of the positive mean shear gradient played an active role in the inclination of these vortical structures within the inner and outer shear layers. The reattachment process resulted in the breakdown of these structures within the developing region. Similarly, various length scales were estimated from these structures. The proper orthogonal decomposition was used to examine the distribution of the turbulent kinetic energy within the offset jet flow. Also, the dynamic role of the large scale structures towards the turbulent intensities, turbulent kinetic energy and Reynolds shear stress was investigated. / October 2016
74

Avaliação da técnica de decomposição por componentes ortogonais para identificação de faltas de alta impedância / Evaluation of the orthogonal decomposition technique for high impedance fault detection

Picchi, Daniel da Costa 18 May 2018 (has links)
Este trabalho apresenta o estado da arte das técnicas mais aplicadas para localização de faltas e modelagem de faltas de alta impedância e propõe a utilização de uma recente técnica baseada na decomposição dos sinais em componentes ortogonais. Este estudo avalia a aplicabilidade da técnica proposta utilizando dados reais de um sistema de distribuição de energia brasileiro, além de apresentar os conceitos teóricos sobre a decomposição em componentes ortogonais. / This work presents the state of the art of the most used techniques for locating and modelling high impedance faults and proposes the use of a recent technique based on the decomposition of the signals in orthogonal components. The objective of this study is to evaluate the application of the proposed technique using real data from a Brazilian distribution network, and presents the theory on orthogonal decomposition.
75

Pour l'évaluation des modifications des caractéristiques d'un système dynamique / For the evaluation of characteristic changes of a dynamic system

Elias, Rana 11 December 2013 (has links)
L'évaluation des modifications des caractéristiques d'un système dynamique non-stationnaire est étudiée suivant les modifications des paramètres modaux. Pour cela, nous étudions en premier l'obtention de ces paramètres, à l'aide des méthodes d'identification à partir des réponses vibratoires mesurées. Trois méthodes d'identification sont étudiées: la méthode de Décomposition Orthogonale Propre (POD), la méthode de Décomposition en Valeurs Singulières (SVD) et la méthode de Décomposition Orthogonale Régularisée (SOD). Ensuite, trois étapes sont considérées pour suivre les changements de masse des systèmes non-stationnaires à partir des variations des paramètres modaux: la localisation de l'instant du changement (étape 1), la détection de la position du changement (étape 2) et la quantification de la valeur du changement (étape 3). Pour l'étape 1, la transformée en ondelettes (TO) qui est une analyse temps-fréquence est appliquée. Ensuite, trois méthodes de détection de la position du changement de la masse sont développées dans l'étape 2. Enfin, la variation relative des fréquences propres est utilisée pour la quantification de la variation relative de la masse dans l'étape 3. Toutes ces méthodes ont été testées numériquement. De plus une maquette simplifiée de bâtiment a été instrumentée sous excitations de choc. Ces essais ont permis de valider les méthodes développées dans cette thèse / Modification of modal parameters is considered the main tool for the evaluation of characteristic changes of a non stationary dynamic system. Therefore, our first interest is to obtain these modal parameters from vibration measures using identification methods. Three methods are discussed here: Proper Orthogonal Decomposition (POD), Singular Value Decomposition (SVD) and Smooth Orthogonal Decomposition (SOD). Then, in order to evaluate the mass changes in non stationary systems, three steps are proposed: instant localization of mass changes (step 1), determination of geometrical location of the mass changes (step 2) and quantification of mass changes (step 3). The Wavelet transform (WT), considered to be a time-frequency analysis, is indented in step 1. In step 2, three methods for the detection of the position of the mass changes are developed. Finally, the relative variation of the natural frequencies of the system is used to evaluate the relative variation of the mass in step 3. The efficiency of these methods is verified by numerical tests. Moreover a building experimental model, instrumented with accelerometers, is studied in the case of after-shock vibrations. These experimental tests permit to validate the methods proposed in this thesis
76

Construction de modèles réduits numériques pour les écoulements compressibles linéarisés

Serre, Gilles 27 January 2012 (has links)
Dans les centrales nucléaires et thermiques, certaines installations sont sujettes à des couplages acousto-mécaniques pouvant nuire fortement à leur bon fonctionnement. La compréhension et la prédiction de ces couplages multi-physiques nécessitent le développement de modèles numériques de très grande précision. Ces modèles sont si coûteux à résoudre qu’il n’est pas envisageable de les utiliser dans des boucles de contrôle ou encore d’optimisation paramétrique. Dans ce manuscrit de thèse, le but est d’exploiter un nombre limité de calculs coûteux pour construire un modèle numérique qui soit de très faible dimension. Ces modèles numériques réduits doivent être capables, en temps réel, de reproduire ces calculs haute-fidélité mais aussi d’extrapoler ces résultats à d’autres points de fonctionnement plus ou moins proches. L’évolution dé petites perturbations compressibles au sein d’un écoulement complexe moyenné est modélisée à partir des équations d’Euler linéarisées dont la nature hyperbolique complique l’application des méthodes de réduction classiques. Les principales problématiques théoriques et numériques qui émergent lors de la construction du système réduit par méthode de projection sont alors exposées. En particulier, les problèmes fondamentaux de la préservation de la stabilité et du contrôle de l’énergie des systèmes réduits sont largement développés et une nouvelle méthode de stabilisation est proposée. Leur sensibilité paramétrique est aussi discutée. Les modèles réduits stables sont ensuite intégrées dans un code de calcul industriel pour prendre en compte des géométries complexes. De plus, la présence de solides dont les parois peuvent être fixes ou mobiles est abordée. En particulier, les petits déplacements de paroi sont modélisés avec une loi de transpiration. Cette condition aux limites est intégrée dans le formalisme du contrôle de façon à lever la difficulté induite par sa non homogénéité. Finalement, les modèles réduits sont exploités pour prédire en temps réel la réponse des systèmes à une loi de contrôle arbitraire. Par exemple, la fréquence et l’amplitude du chargement peuvent varier. Le code de calcul réduit ainsi développé a pour principale vocation de rendre possible des expertises aéroélastiques à faible coût. / In nuclear and thermal power stations, some installations produce acoustics/mechanics coupling which may cause important damage and bad operating performances. Prediction and understanding of these physical phenomena need the development of high-fidelity numerical models which are prohibitive to solve. Therefore, these models cannot be used for control or even parametric optimization applications. In this work, the goal is to use some high-fidelity solutions for building reduced-order models which are able to calculate again these solutions but in real-time, and also to predict solutions for other close configurations. Modelling of compressible disturbances in a complex mean flow is given by hyperbolic linearized Euler equations which create some difficulties to perform classical reduction methods. Theoretical and numerical problems are then introduced when a projection method is applied. In particular, the conservation of stability and the control of energy of reduced-order models are studied and a new stabilization procedure is proposed. Parametric sensitivity is also discussed. Afterwards, stable reduced-order models are developed in an industrial code to consider complex geometries. Furthermore, modelling of solids with fixed or vibrating walls are taken into account. Particularly, small vibrations are modelled thanks to a transpiration law. This boundary condition is implemented in the framework of linear control theory to apply reduction methods. Finally, reduced-order models are tested to predict solutions in real time. For instance, frequency and amplitude of the loading can change. The developed reduced order model should be used for aeroelastic industrial problems with more realistic costs.
77

Analytical Computation of Proper Orthogonal Decomposition Modes and n-Width Approximations for the Heat Equation with Boundary Control

Fernandez, Tasha N. 01 December 2010 (has links)
Model reduction is a powerful and ubiquitous tool used to reduce the complexity of a dynamical system while preserving the input-output behavior. It has been applied throughout many different disciplines, including controls, fluid and structural dynamics. Model reduction via proper orthogonal decomposition (POD) is utilized for of control of partial differential equations. In this thesis, the analytical expressions of POD modes are derived for the heat equation. The autocorrelation function of the latter is viewed as the kernel of a self adjoint compact operator, and the POD modes and corresponding eigenvalues are computed by solving homogeneous integral equations of the second kind. The computed POD modes are compared to the modes obtained from snapshots for both the one-dimensional and two-dimensional heat equation. Boundary feedback control is obtained through reduced-order POD models of the heat equation and the effectiveness of reduced-order control is compared to the full-order control. Moreover, the explicit computation of the POD modes and eigenvalues are shown to allow the computation of different n-widths approximations for the heat equation, including the linear, Kolmogorov, Gelfand, and Bernstein n-widths.
78

Visualization and quantification of hydrodynamics and dose in UV reactors by 3D laser induced fluorescence

Gandhi, Varun N. 13 November 2012 (has links)
The validation of UV reactors is currently accomplished by biodosimetry, in which the reactor is treated as a "black-box" and hence cannot account for the dependence of the dose delivery on the complex hydrodynamics and the spatial variation in UV intensity. Alternative methods, such as fluorescent microspheres as non-biological surrogates and computational fluid dynamics (CFD) simulations, have been developed; however, each method has its shortcomings. In this study, a novel technique for the spatial and temporal assessment of the hydrodynamics and the UV dose delivered and the link between these two factors in a lab-scale UV reactor using three dimensional laser induced fluorescence (3DLIF) is developed. This tool can also be utilized for the optimization of UV reactors and to provide data for validation of CFD-based simulation techniques. Regions of optimization include areas around the UV lamp where short-circuiting occurred, a longer inlet approach section that enhances the performance of the reactor by reducing short circuiting paths and a longer outlet region to provide greater mixing. 3DLIF allows real time characterization of mixing and dose delivery in a single lamp UV reactor placed perpendicular to flow by capturing fluorescence images emitted from a laser dye, Rhodamine 6G, using a high speed CCD camera. In addition to three-dimensional mixing, the technique successfully visualized the two-dimensional, transient mixing behaviors such as the recirculation zone and the von Karman vortices and the fluence delivery within the reactor, which has not been possible with traditional tracer test techniques. Finally, a decomposition technique was applied to the flow and fluence delivery based concentration data to reveal similar structures that affect these phenomena. Based on this analysis, changing the flow in the reactor, i.e. the Reynolds number, will directly affect the fluence delivery.
79

Multi-Scale Thermal Modeling Methodology for High Power-Electronic Cabinets

Burton, Ludovic Nicolas 24 August 2007 (has links)
Future generation of all-electric ships will be highly dependent on electric power, since every single system aboard such as the drive propulsion, the weapon system, the communication and navigation systems will be electrically powered. Power conversion modules (PCM) will be used to transform and distribute the power as desired in various zone within the ships. As power densities increase at both components and systems-levels, high-fidelity thermal models of those PCMs are indispensable to reach high performance and energy efficient designs. Efficient systems-level thermal management requires modeling and analysis of complex turbulent fluid flow and heat transfer processes across several decades of length scales. In this thesis, a methodology for thermal modeling of complex PCM cabinets used in naval applications is offered. High fidelity computational fluid dynamics and heat transfer (CFD/HT) models are created in order to analyze the heat dissipation from the chip to the multi-cabinet level and optimize turbulent convection cooling inside the cabinet enclosure. Conventional CFD/HT modeling techniques for such complex and multi-scale systems are severely limited as a design or optimization tool. The large size of such models and the complex physics involved result in extremely slow processing time. A multi-scale approach has been developed to predict accurately the overall airflow conditions at the cabinet level as well as the airflow around components which dictates the chip temperature in details. Various models of different length scales are linked together by matching the boundary conditions. The advantage is that it allows high fidelity models at each length scale and more detailed simulations are obtained than what could have been accomplished with a single model methodology. It was found that the power cabinets under the prescribed design parameters, experience operating point airflow rates that are much lower than the design requirements. The flow is unevenly distributed through the various bays. Approximately 90 % of the cold plenum inlet flow rate goes exclusively through Bay 1 and Bay 2. Re-circulation and reverse flow are observed in regions experiencing a lack of flow motion. As a result high temperature of the air flow and consequently high component temperatures are also experienced in the upper bays of the cabinet. A proper orthogonal decomposition (POD) methodology has been performed to develop reduced-order compact models of the PCM cabinets. The reduced-order modeling approach based on POD reduces the numerical models containing 35 x 109 DOF down to less than 20 DOF, while still retaining a great accuracy. The reduced-order models developed yields prediction of the full-field 3-D cabinet within 30 seconds as opposed to the CFD/HT simulations that take more than 3 hours using a high power computer cluster. The reduced-order modeling methodology developed could be a useful tool to quickly and accurately characterize the thermal behavior of any electronics system and provides a good basis for thermal design and optimization purposes.
80

Dynamical Modeling Of The Flow Over Flapping Wing By Applying Proper Orthogonal Decomposition And System Identification

Durmaz, Oguz 01 September 2011 (has links) (PDF)
In this study the dynamical modeling of the unsteady flow over a flapping wing is considered. The technique is based on collecting instantaneous velocity field data of the flow using Particle Image Velocimetry (PIV), applying image processing to these snapshots to locate the airfoil, filling the airfoil and its surface with proper velocity data, applying Proper Orthogonal Decomposition (POD) to these post-processed images to compute the POD modes and time coefficients, and finally fitting a discrete time state space dynamical model to the trajectories of the time coefficients using subspace system identification (N4SID). The procedure is applied using MATLAB for the data obtained from NACA 0012, SD 7003, elliptic airfoil and flat plate, and the results show that the dynamical model obtained can represent the flow dynamics with acceptable accuracy.

Page generated in 0.0973 seconds