• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identificação de sistemas não-lineares usando modelos de Volterra baseados em funções ortonormais de Kautz e generalizadas / Identification of nonlinear systems using volterra models based on Kautz functions and generalized orthonormal functions

Rosa, Alex da 03 December 2009 (has links)
Orientadores: Wagner Caradori do Amaral, Ricardo Jose Gabrielli Barreto Campello / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-14T00:00:28Z (GMT). No. of bitstreams: 1 Rosa_Alexda_D.pdf: 1534572 bytes, checksum: 9100bf7dc7bd642daebdac3e973c668c (MD5) Previous issue date: 2009 / Resumo: Este trabalho enfoca a modelagem de sistemas não-lineares usando modelos de Volterra com funções de base ortonormal (Orthonormal Basis Functions - OBF). Os modelos de Volterra representam uma generalização do modelo de resposta ao impulso para a descrição de sistemas não-lineares e, em geral, exigem um elevado número de termos para representar os kernels de Volterra. Esta desvantagem pode ser superada representando-se os kernels usando um conjunto de funções ortonormais. O modelo resultante, conhecido como modelo OBF-Volterra, pode ser truncado em um n'umero menor de termos se as funções da base forem projetadas adequadamente. O problema central é como selecionar os polos livres que completamente parametrizam estas funções, particularmente as funções de Kautz e as funções ortonormais generalizadas (Generalized Orthonormal Basis Functions - GOBF). Uma das abordagens adotadas para resolver este problema envolve a minimização de um limitante superior para o erro resultante do truncamento da expansao do kernel. Cada kernel multidimensional é decomposto em um conjunto de bases de Kautz independentes, em que cada base é parametrizada por um par individual de pólos complexos conjugados com a intenção de representar a dinamica dominante do kernel ao longo de uma dimensão particular. Obtem-se uma solução analítica para um dos parâmetros de Kautz, válida para modelos de Volterra de qualquer ordem. Outra abordagem envolve a otimização numerica das bases de funções ortonormais usadas para a aproximação de sistemas dinamicos. Esta estrategia e baseada no cálculo de expressões analíticas para os gradientes da sa?da dos filtros ortonormais com relação aos pólos da base. Estes gradientes fornecem direções de busca exatas para otimizar os pólos de uma dada base ortonormal. As direções de busca, por sua vez, podem ser usadas como parte de um procedimento de otimização para obter o mínimo de uma função de custo que leva em consideração o erro de estimação da saída do sistema. As expressões relativas à base de Kautz e à base GOBF são obtidas. A metodologia proposta conta somente com dados entrada-sa'?da medidos do sistema a ser modelado, isto é, não se exige nenhuma informação prévia sobre os kernels de Volterra. Exemplos de simulação ilustram a aplicação desta abordagem para a modelagem de sistemas lineares e não-lineares, incluindo um sistema real de levitação magnética com comportamento oscilatorio. Por ultimo, estuda-se a representação de sistemas dinâmicos incertos baseada em modelos com incerteza estruturada. A incerteza de um conjunto de kernels de Volterra e mapeada em intervalos de pertinência que definem os coeficientes da expansão ortonormal. Condições adicionais são propostas para garantir que todos os kernels do processo sejam representados pelo modelo, o que permite estimar os limites das incertezas / Abstract: This work is concerned with the modeling of nonlinear systems using Volterra models with orthonormal basis functions (OBF). Volterra models represent a generalization of the impulse response model for the description of nonlinear systems and, in general, require a large number of terms for representing the Volterra kernels. Such a drawback can be overcome by representing the kernels using a set of orthonormal functions. The resulting model, so-called OBF-Volterra model, can be truncated into fewer terms if the basis functions are properly designed. The underlying problem is how to select the free-design poles that fully parameterize these functions, particularly the two-parameter Kautz functions and the Generalized Orthonormal Basis Functions (GOBF). One of the approaches adopted to solve this problem involves minimizing an upper bound for the error resulting from the truncation of the kernel expansion. Each multidimensional kernel is decomposed into a set of independent Kautz bases, in which every basis is parameterized by an individual pair of complex conjugate poles intended to represent the dominant dynamic of the kernel along a particular dimension. An analytical solution for one of the Kautz parameters, valid for Volterra models of any order, is derived. Other approach involves the numerical optimization of orthonormal bases of functions used for approximation of dynamic systems. This strategy is based on the computation of analytical expressions for the gradients of the output of the orthonormal filters with respect to the basis poles. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into consideration the error of estimation of the system output. The expressions relative to the Kautz basis and to the GOBF are addressed. The proposed methodology relies solely on input-output data measured from the system to be modeled, i.e., no previous information about the Volterra kernels is required. Simulation examples illustrate the application of this approach to the modeling of linear and nonlinear systems, including a real magnetic levitation system with oscillatory behavior. At last, the representation of uncertain systems based on models having structured uncertainty is studied. The uncertainty of a set of Volterra kernels is mapped on to intervals defining the coefficients of the orthonormal expansion. Additional conditions are proposed to guarantee that all the process kernels to be represented by the model, which allows estimating the uncertainty bounds / Doutorado / Automação / Doutor em Engenharia Elétrica
2

A state-space parameterization for perfect-reconstruction wavelet FIR filter banks with special orthonormal basis functions / Uma parametrização no espaço de estados para bancos de filtros FIR de reconstrução perfeita com funções wavelet de base ortonormal

Uzinski, Julio Cezar [UNESP] 25 November 2016 (has links)
Submitted by JULIO CEZAR UZINSKI null (uzinski.jc@gmail.com) on 2016-12-15T21:43:22Z No. of bitstreams: 1 Uzinski JC.pdf: 2380247 bytes, checksum: 910b14a40501433136262e638e586b5f (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-20T16:20:21Z (GMT) No. of bitstreams: 1 uzinski_jc_dr_ilha.pdf: 2380247 bytes, checksum: 910b14a40501433136262e638e586b5f (MD5) / Made available in DSpace on 2016-12-20T16:20:21Z (GMT). No. of bitstreams: 1 uzinski_jc_dr_ilha.pdf: 2380247 bytes, checksum: 910b14a40501433136262e638e586b5f (MD5) Previous issue date: 2016-11-25 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Esta tese apresenta uma parametrização no espaço de estados para a transformada wavelet rápida. Esta parametrização é baseada em funções de base ortonormal e filtros de resposta finita ao impulso simultaneamente, uma vez que, a transformada rápida wavelet é um algoritmo que consiste em decompor sinais no domínio do tempo em sequências de coeficientes baseados numa base ortogonal de funções wavelet. Deste modo, vantagens apresentadas por ambas as propostas são incorporadas. Modelos de resposta finita ao impulso têm propriedades atrativas como vantagens computacionais e analíticas, garantia de estabilidade BIBO e robustez para a mudança de alguns parâmetros, dentre outras. Por outro lado, séries de funções de base ortonormal têm características que as fazem atrativas para a modelagem de sistemas dinâmicos, como ausência de recursão da saída, a não necessidade de se conhecer previamente a estrutura exata do vetor de regressão, possibilidade de aumentar a capacidade de representação do modelo aumentando-se o número de funções ortonormais utilizadas, desacoplamento natural das saídas em modelos multivariáveis; tolerância a dinâmicas não modeladas. Além disso, a realização no espaço de estados é mínima. A contribuição deste trabalho consiste no desenvolvimento de uma realização no espaço de estados para bancos de filtros wavelet, em que há a presença explícita de parâmetros que podem ser livremente ajustados mantendo as propriedades de reconstrução perfeita e ortonormalidade. Para ilustrar o funcionamento e as vantagens da técnica proposta, alguns exemplos de decomposição de sinais no contexto de processamento de sinais mostrando que ela proporciona os mesmos coeficientes wavelet que a transformada wavelet rápida, e uma aplicação em controle através de realimentação dinâmica de estados também são apresentados nesta tese. / This thesis presents a state-space parameterization for the fast wavelet transform. This parameterization is based on orthonormal basis functions and finite impulse response filters at the same time, since the fast wavelet transform is an algorithm, which converts a signal in the time domain into a sequence of coefficients based on an orthogonal basis of small finite wavelet functions. Advantages presented by both proposals are incorporated. Finite impulse response systems have attractive properties, for instance, computational and analytical advantages, BIBO stability and robustness guarantee to some parameter changes, and others. On the other hand, orthonormal basis functions have some characteristics that make them attractive for dynamic systems modeling, examples are, output recursion absence, not requiring prior regression vector exact structure knowledge; possibility of increasing the model representation capacity by increasing the number of orthonormal functions employed; natural outputs uncoupling in multivariable models; tolerance to unmodeled dynamics, and others. Furthermore, the state-space realization is minimal. The contribution of this work consists in the development of a state-space realization for a wavelet filter bank, with the explicit presence of the parameters that can be freely adjusted, keeping perfect-reconstruction and orthonormality guarantees. In order to illustrate advantages and how the proposed technique works, some decomposition examples in signal processing context are presented showing that it provides the same wavelet coefficients as the fast wavelet transform, and an application on dynamic state feedback control is also presented in this thesis. / CNPq: 160545/2013-7
3

A state-space parameterization for perfect-reconstruction wavelet FIR filter banks with special orthonormal basis functions /

Uzinski, Julio Cezar January 2016 (has links)
Orientador: Francisco Villarreal Alvarado / Resumo: Esta tese apresenta uma parametrização no espaço de estados para a transformada wavelet rápida. Esta parametrização é baseada em funções de base ortonormal e filtros de resposta finita ao impulso simultaneamente, uma vez que, a transformada rápida wavelet é um algoritmo que consiste em decompor sinais no domínio do tempo em sequências de coeficientes baseados numa base ortogonal de funções wavelet. Deste modo, vantagens apresentadas por ambas as propostas são incorporadas. Modelos de resposta finita ao impulso têm propriedades atrativas como vantagens computacionais e analíticas, garantia de estabilidade BIBO e robustez para a mudança de alguns parâmetros, dentre outras. Por outro lado, séries de funções de base ortonormal têm características que as fazem atrativas para a modelagem de sistemas dinâmicos, como ausência de recursão da saída, a não necessidade de se conhecer previamente a estrutura exata do vetor de regressão, possibilidade de aumentar a capacidade de representação do modelo aumentando-se o número de funções ortonormais utilizadas, desacoplamento natural das saídas em modelos multivariáveis; tolerância a dinâmicas não modeladas. Além disso, a realização no espaço de estados é mínima. A contribuição deste trabalho consiste no desenvolvimento de uma realização no espaço de estados para bancos de filtros wavelet, em que há a presença explícita de parâmetros que podem ser livremente ajustados mantendo as propriedades de reconstrução perfeita e ortonormalidade. ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
4

Modelagem de sistemas dinamicos não lineares utilizando sistemas fuzzy, algoritmos geneticos e funções de base ortonormal / Modeling of nonlinear dynamics systems using fuzzy systems, genetic algorithms and orthonormal basis functions

Medeiros, Anderson Vinicius de 23 January 2006 (has links)
Orientadores: Wagner Caradori do Amaral, Ricardo Jose Gabrielli Barreto Campello / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T08:36:39Z (GMT). No. of bitstreams: 1 Medeiros_AndersonViniciusde_M.pdf: 896535 bytes, checksum: 48d0d75d38fcbbd0f47f7c49823806f1 (MD5) Previous issue date: 2006 / Resumo: Esta dissertação apresenta uma metodologia para a geração e otimização de modelos fuzzy Takagi-Sugeno (TS) com Funções de Base Ortonormal (FBO) para sistemas dinâmicos não lineares utilizando um algoritmo genético. Funções de base ortonormal têm sido utilizadas por proporcionarem aos modelos propriedades como ausência de recursão da saída e possibilidade de se alcançar uma razoável capacidade de representação com poucos parâmetros. Modelos fuzzy TS agregam a essas propriedades as características de interpretabilidade e facilidade de representação do conhecimento. Enfim, os algoritmos genéticos se apresentam como um método bem estabelecido na literatura na tarefa de sintonia de parâmetros de modelos fuzzy TS. Diante disso, desenvolveu-se um algoritmo genético para a otimização de duas arquiteturas, o modelo fuzzy TS FBO e sua extensão, o modelo fuzzy TS FBO Generalizado. Foram analisados modelos locais lineares e não lineares nos conseqüentes das regras fuzzy, assim como a diferença entre a estimação local e a global (utilizando o estimador de mínimos quadrados) dos parâmetros desses modelos locais. No algoritmo genético, cada arquitetura contou com uma representação cromossômica específica. Elaborou-se para ambas uma função de fitness baseada no critério de Akaike. Em relação aos operadores de reprodução, no operador de crossover aritmético foi introduzida uma alteração para a manutenção da diversidade da população e no operador de mutação gaussiana adotou-se uma distribuição variável ao longo das gerações e diferenciada para cada gene. Introduziu-se ainda um método de simplificação de soluções através de medidas de similaridade para a primeira arquitetura citada. A metodologia foi avaliada na tarefa de modelagem de dois sistemas dinâmicos não lineares: um processo de polimerização e um levitador magnético / Abstract: This work introduces a methodology for the generation and optimization of Takagi-Sugeno (TS) fuzzy models with Orthonormal Basis Functions (OBF) for nonlinear dynamic systems based on a genetic algorithm. Orthonormal basis functions have been used because they provide models with properties like absence of output feedback and the possibility to reach a reasonable approximation capability with just a few parameters. TS fuzzy models aggregate to these properties the characteristics of interpretability and easiness to knowledge representation in a linguistic manner. Genetic algorithms appear as a well-established method for tuning parameters of TS fuzzy models. In this context, it was developed a genetic algorithm for the optimization of two architectures, the OBF TS fuzzy model and its extension, the Generalized OBF TS fuzzy model. Local linear and nonlinear models in the consequent of the fuzzy rules were analyzed, as well as the difference between local and global estimation (using least squares estimation) of the parameters of these local models. Each architecture had a specific chromosome representation in the genetic algorithm. It was developed a fitness function based on the Akaike information criterion. With respect to the genetic operators, the arithmetic crossover was modified in order to maintain the population diversity and the Gaussian mutation had its distribution varied along the generations and differentiated for each gene. Besides, it was used, in the first architecture presented, a method for simplifying the solutions by using similarity measures. The whole methodology was evaluated in modeling two nonlinear dynamic systems, a polymerization process and a magnetic levitator / Mestrado / Automação / Mestre em Engenharia Elétrica

Page generated in 0.1996 seconds