• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • Tagged with
  • 170
  • 170
  • 170
  • 170
  • 36
  • 29
  • 28
  • 27
  • 27
  • 24
  • 24
  • 23
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Relative Heart Ventricle Mass and Cardiac Performance in Amphibians

Kluthe, Gregory Joseph 01 January 2012 (has links)
This study used an in situ heart preparation to analyze the power and work of spontaneously beating hearts of four anurans (R. marina, L. catesbeianus, X. laevis, P. edulis) and three urodeles (N. maculosus, A. tigrinum, A. tridactylum) in order to elucidate the meaning of relative ventricle mass (RVM) in terms of specific cardiac performance variables. This study also tests two hypotheses: 1) the ventricles of terrestrial species (R. marina, P. edulis, A. tigrinum) of amphibians are capable of greater maximum power outputs (Pmax) compared to aquatic species (X. laevis, A. tridactylum, N. maculosus, L. catesbeianus) and, 2) the ventricles of Anuran species (R. marina, P. edulis, L. catesbeianus, X. laevis) are capable of greater maximum power output compared to aquatic species (A. tigrinum, A. tridactylum, N. maculosus). The data supported both hypotheses. RVM was significantly correlated with Pmax, stroke volume, cardiac output, afterload at Pmax, and preload at Pmax. Preload at Pmax and afterload at Pmax also correlated very closely with each other, suggesting that an increase blood volume and/or increased modulation of sympathetic tone may influence interspecific variation RVM and may have played a role in supporting higher rates of metabolism, as well as dealing with hypovolemic stresses of life on land.
92

Migratory patterns and population genetic structure in a declining wetland-dependent songbird

DeSaix, Matthew G 01 January 2018 (has links)
Understanding migratory connectivity is essential for assessing the drivers behind population dynamics and for implementing effective management in migratory species. Genetic markers provide a means to describe migratory connectivity, as well as incorporate population genetic analyses, however genetic markers can be uninformative for species with weak genetic structure. In this study, we evaluate range-wide population genetic structure and migratory connectivity in the prothonotary warbler, Protonotaria citrea, a wetland-dependent neotropical migratory songbird, using high-resolution genetic markers. We reveal regional genetic structure between sampling sites in the Mississippi River Valley and the Atlantic Seaboard with overall weak genetic differentiation among populations (FST = 0.0051). By ranking loci by FST and using subsets of the most differentiated genetic markers (200 – 3000), we identify a maximum assignment accuracy (89.7% to site, 94.3% to region) using 600 single nucleotide polymorphisms. We assign samples from unknown origin nonbreeding sites to a breeding region, illustrating weak migratory connectivity between prothonotary warbler breeding and nonbreeding grounds. Our results highlight the importance of using high-resolution markers in studies of migratory connectivity with species exhibiting weak genetic structure. Using similar techniques, studies may begin to describe population genetic structure that was previously undocumented, allowing us to infer the migratory patterns of an increasing number of species.
93

The Effects of Thermal Stress on Balanus glandula

Walker, Breanna E 01 April 2013 (has links)
Global climate change has become an increasing source of concern due to the recent build-up of greenhouses gases in the atmosphere. The rocky intertidal zone, as the interface between land and sea, is particularly vulnerable to climate change. Many inhabitants of the intertidal zone are sessile and thus experience both terrestrial and aquatic lifestyles at low and high tides, respectively. When emersed at low tide, organisms experience a number of abiotic stresses including heat stress, desiccation stress, and low oxygen availability. Most intertidal organisms have evolved from marine animals and respire most efficiently in water. Barnacles are one such type of intertidal organism. At low tide barnacles face a tradeoff between access to oxygen and loss of water through evaporation. In this study, individuals of the species Balanus glandula, a common intertidal barnacle, were exposed to temperatures of 16°C, 24°C, 30°C, and 35°C for four hours in simulated low tide to determine when aerial respiration occurred. Oxygen levels were measured over the four hours of the exposure and oxygen consumption rates were calculated. Oxygen consumption occurred at all temperatures studied, but the rates at different temperatures were not significantly different from each other. The results showed that barnacles can conduct aerial respiration over the entire course of the low tide exposure despite the risk of desiccation. This indicates that ATP demand remains substantial throughout the low tide and that resorting to anaerobic respiration is not sufficient to meet metabolic needs during low tide exposure.
94

Late Cretaceous faunal dynamics in the Western Interior Seaway: The record from the Red Bird Section, eastern Wyoming

Slattery, Joshua Stephen 01 January 2011 (has links)
Studies examining bioevents (e.g., mass extinctions, faunal turnovers, diversification events) usually only scrutinize a short interval prior to such events, however, understanding their actual paleobiological implications requires a thorough understanding of the background conditions. The objective of this study is to document the background biodiversity dynamics in a single lithofacies of the Upper Cretaceous Pierre Shale that was deposited in an offshore setting of the Western Interior Seaway (WIS) and to place these changes into an environmental context. To assess the background biodiversity dynamics, the concretionary faunas of the Baculites eliasi through B. clinolobatus biozones of the Pierre Shale in eastern Wyoming were examined to understand the structure of marine habitats in the WIS through an interval of ~2.5 Ma. Both changes in the taxonomic composition of assemblages and the relative abundance of the various species are interpreted to reflect ecological and environmental change through the study interval. The concretionary faunas are thought to represent relatively short-term, time-averaged accumulations of dead and living animals on the muddy sea floor of the WIS that were concentrated by storm or current activity. They are likely accurate representations of the original skeletonized fauna of the WIS. The samples with lower diversity and abundances show a relationship with intervals when water conditions were deepest and the paleoshoreline was furthest to the west, while higher diversity and abundances match periods when the paleoshoreline was the closest and shallow-water conditions prevailed in that part of the WIS. The decrease in diversity with depth can best be explained by the long-term presence of dysoxic/anoxic conditions that would have precluded benthic faunas. The distribution of taxa and diversity of the assemblages seen in the study interval most likely reflect migrating oxygen-controlled biofacies in the WIS that were responding to changes in depth and the proximity to the western shoreline that was in turn controlled by relative sea-level fluctuations. This analysis shows that significant changes in richness, abundance, and guild structure can arise in response to variations in sea level with no apparent changes in lithology. It is also shown that a lack of environmental context can significantly influence interpretations of paleobiological and paleoecological data and it is recommended that future lines of research should examine faunal, morphological, and ecological change in a time/environmental context.
95

GRASSLAND SUSTAINABILITY IN KENTUCKY: CASE STUDIES QUANTIFYING THE EFFECTS OF CLIMATE CHANGE ON SLUG HERBIVORY IN PASTURES AND DIFFERENT HOME LAWN SYSTEMS ON TURF GREENHOUSE GAS EMISSIONS

Weber, Daniel Adam 01 January 2014 (has links)
Grasslands comprise the greatest biome by land area, are sensitive to environmental factors affected by climate change, and can impact future climate change through their ability to store and release greenhouse gasses (GHGs). I performed two studies: 1) evaluated the effects of increased temperature and precipitation on slug herbivory/abundance and pasture forage production; 2) quantified different homeowner lawn system effects on soil-to-atmosphere GHG emissions. Climate change will likely affect pasture forage production, with implications for slug herbivory and abundance. I found little evidence that slugs have or will have significant effects on pasture production or plant community. Warming altered the abundance of slugs and modified seasonal trends, increasing slug abundance in spring/winter and reducing it in late-summer/fall, through both direct effects and changes in plant community and forage quality. Home lawns vary in levels of management, influencing the exchange of GHGs. I quantified the effects of three common home lawn systems of central Kentucky on GHG emissions, but found no significant differences in CO2, N2O, and NH3 fluxes. My research suggests that slug herbivory is not a dominant ecological process in Kentucky pastures and that common home lawn systems have similar soil-to-atmosphere GHG emissions.
96

The Vascular Flora of Greater San Quintín, Baja California, Mexico

Vanderplank, Sula E 01 January 2010 (has links)
The plants of San Quintín (Baja California, Mexico) were documented through intensive fieldwork and the collection of herbarium specimens to create a checklist of species. This region is home to a diverse flora with high levels of local endemism and many rare plants. The flora documented in this study was compared to historical records from the region and shows the impact of agriculture and urbanization on the plants, including several extirpated species. A study of the perennial vegetation using a 1 km grid provides species distribution data for 140 native species, which were assessed to highlight areas of significant species richness for native, rare, and endemic taxa. Several non-native plants were also mapped to provide baseline data. Areas of conservation priority for the flora of Greater San Quintín are discussed in light of these combined findings.
97

Regional evolutionary distinctiveness and endangerment as a means of prioritizing protection of endangered species

Brantner, Emily K 12 November 2015 (has links)
Conservation is costly, and choices must be made about where to best allocate limited resources. I propose a regional evolutionary diversity and endangerment (RED-E) approach to prioritization of endangered species. It builds off of the evolutionary diversity and global endangerment (EDGE) approach, but will allow conservation agencies to focus their efforts on species in specific regions. I used the RED-E approach to prioritize mammal and bird species listed under the U.S. Endangered Species Act (ESA), as well as to make a ranking of species without ESA critical habitat (CH), as a practical application. Regional conservation approaches differ significantly from global approaches. The RED-E approach places a high significance on the level of endangerment of a species, but also allows for very distinct species to have increased prioritization on the RED-E list. Using the CH RED-E list, the U.S. government could begin focusing resources toward endangered and genetically diverse species.
98

Effects of Multiple Ecological Drivers on Recruitment and Succession of Coral Reef Macroalgal Communities

Duran, Alain 14 June 2013 (has links)
The study evaluated the effects of herbivory pressure, nutrient availability and potential propagule supply on recruitment and succession of coral reef macroalgal communities. Recruitment and succession tiles were placed in a nutrient-herbivory factorial experiment and macroalgal abundances were evaluated through time. Proportional abundances of macroalgal form-functional groups on recruitment and succession tiles were similar to field established communities within treatments, evidencing possible effects of adult macroalgae as propagule supply. Macroalgal abundance of recruitment tiles increased with nutrient loading and herbivory reduction combined whereas on succession tiles nutrient loading increased abundance of articulated-calcareous only when herbivores were excluded. Macroalgal field established communities were only affected by herbivory reduction.
99

Non-Consumptive Effects of Predators in Coral Reef Communities and the Indirect Consequences of Marine Protected Areas

Catano, Laura 05 November 2014 (has links)
Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.
100

A Comparative Study of Concurrent Acoustic and Diver Survey Data, and Fish Community Descriptions of a High Latitude Coral Reef, Florida, USA

Zenone, Adam M 23 March 2015 (has links)
Fisheries independent data on relatively unstudied nekton communities were used to explore the efficacy of new tools to be applied in the investigation of shallow coastal coral reef habitats. These data obtained through concurrent diver visual and acoustic surveys provided descriptions of spatial community distribution patterns across seasonal temporal scales in a previously undocumented region. Fish density estimates by both diver and acoustic methodologies showed a general agreement in ability to detect distributional patterns across reef tracts, though magnitude of density estimates were different. Fish communities in southeastern Florida showed significant trends in spatial distribution and seasonal abundance, with higher estimates of biomass obtained in the dry season. Further, community composition shifted across reef tracts and seasons as a function of the movements of several key reef species.

Page generated in 0.1396 seconds