Spelling suggestions: "subject:"other microbiology"" "subject:"other microbiologyc""
21 |
DISSOLUTION, OCEAN ACIDIFICATION AND BIOTIC EXTINCTIONS PRIOR TO THE CRETACEOUS/PALEOGENE (K/PG) BOUNDARY IN THE TROPICAL PACIFICDameron, Serena 17 July 2015 (has links)
The several million years preceding the Cretaceous/Paleogene (K/Pg) boundary has been the focus of many studies. Changes in ocean circulation and sea level, extinctions, and major volcanic events have all been documented for this interval. Important research questions these changes raise include the climate dynamics during the warm, but not hot, time after the decay of the Late Cretaceous greenhouse interval and the stability of ecosystems prior to the mass extinctions at the end-Cretaceous.
I document several biotic perturbations as well as changes in ocean circulation during the Maastrichtian stage of the latest Cretaceous that question whether the biosphere was being preconditioned for the end-Cretaceous extinction. The first event at Shatsky Rise in the tropical North Pacific was the brief acme of inoceramid clams at ~71 Ma, followed by their abrupt extinction during the “mid-Maastrichtian event” at 70.1 Ma. The second is an intriguing dissolution event that began ~67.8 Ma at Ocean Drilling Program Site 1209 (2387 m). The dissolution event is marked by very poor planktic foraminiferal preservation and sharply reduced calcareous plankton diversity. The shift into the dissolution interval was initially gradual, then rapid. Within the late Maastrichtian dissolution interval, the planktic/benthic (P/B) ratio is low, planktic foraminifera are highly fragmented, larger taxa are mostly absent, small taxa are relatively abundant, and planktic foraminifera and nannofossil species richness are low. The event is followed by an abrupt recovery in carbonate preservation ~300 kyr prior to the K/Pg boundary. Was the dissolution event caused by a change in deep water circulation, migration of the site out of the high productivity tropical belt, or ocean acidification associated with Deccan Traps volcanism? Our data show that changing deep water masses, coupled with reduced productivity and associated decrease in pelagic carbonate flux was responsible for the dissolution interval, while Deccan Traps volcanism may have caused surface ocean acidification ~200-kyr prior to the K/Pg mass extinction event.
|
22 |
Effectiveness of Windrow Composting Methodology in Killing a Thermo-Tolerant Species of Salmonella During Mortality CompostingMyers, Spencer Gabriel 01 February 2019 (has links)
In a large agricultural operation, such as the one at Cal Poly San Luis Obispo, disposal of deceased animals is an immense issue. The cost of transporting and rendering every dead animal is inhibitory to the general function of the agricultural operations and their thin budget. Therefore, we propose that composting mortalities could be an economical alternative. Composting is a recognized method for taking animal waste products along with carbon waste and turning it into a pathogen-free, nutrient-rich topsoil. Carcass composting is in fact performed in other countries and states to varying degrees of success. However, the California EPA limits carcass composing to only private land. Therefore, the purpose of this work was to determine the efficacy of killing pathogens by composting using bench top composting models. Ultimately, our goal is to provide “proof of concept” data in order to gain permission for a full-scale carcass compost pile to be set up at Cal Poly San Luis Obispo.
Using thermo tolerant Salmonella senftenberg as an indicator organism, we performed bench top trials of traditional and carcass compost in the lab. Samples were inoculated with S. senftenberg and kept at 55°C for 15 days in accordance with the California EPA and Test Method for the Examination of Composting and Compost (TMECC). Samples were then plated and processed for multiple tube analysis and most probable number. Samples were also partitioned for a viability qPCR with propidium monoazide (PMA) to compare to the classic techniques. Using these methods we were then able to track and produce thermal death time data for S. senftenberg in both traditional and carcass compost. By comparing the types of compost, we were able to determine that the composting method presented by the California EPA and the TMECC produces safe, pathogen free compost, even when inoculated carcasses were introduced. However, even with removal of dead cells by PMA, qPCR did not outperform the classical microbiological methods for as tracking pathogen killing.
|
23 |
Second Messenger Cyclic-di-GMP Regulation in Acinetobacter baumanniiDeal, Justin 01 May 2020 (has links)
Over time, “superbugs,” or bacteria that have become resistant to antibiotics, have become a great concern in modern medicine. Viable alternates are currently being looked into as effective and safe ways to prevent or treat infections caused by these superbugs. One such method is through the utilization of the second messenger molecule cyclic-di-GMP (c-di-GMP) that has been shown to regulate phenotypes within other bacteria that may control surface colonization in Acinetobacter baumannii. Through a series of experiments, the active enzymes that create c-di-GMP - diguanylate cyclases - and break down c-di- GMP - phosphodiesterases - have been inactivated in mutants to test phenotypes including biofilm formation, motility, antibiotic resistance, and desiccation survival. The research’s objective is to show that manipulation of c-di-GMP within the multi-drug resistant strain of Acinetobacter baumannii may serve as a means to control this bacteria.
|
24 |
Effects of microcystin-LR on channel catfish (Ictalurus punctatus) susceptibility to microbial pathogens (Aeromonas hydrophila and Edwardsiella piscicida)Marchant, Alison 09 December 2022 (has links) (PDF)
Microcystin-LR is a hepatotoxin produced by cyanobacteria. Aeromonas hydrophila and Edwardsiella piscicida infections are leading causes of losses in market-sized channel catfish (Ictalurus punctatus). These older fish should have natural immunity in place and a predisposing factor is likely a prerequisite for these disease outbreaks. While microcystin-LR rarely causes mortality in warm-water aquaculture, we believe it may be a predisposing factor that leads to bacterial disease outbreaks during the summer months due to its ability to damage the liver. Our study investigated microcystin-LR’s effects on channel catfish susceptibility to these pathogens. We found that a sublethal dose of microcystin-LR induced substantial damage to multiple immune organs. In our challenges with both the toxin and bacteria, we saw a significant increase in mortality of fish. Our findings suggest that microcystin-LR increases channel catfish susceptibility to Aeromonas hydrophila and Edwardsiella piscicida infections.
|
25 |
Exploring the Physiological Role of Vibrio fischeri PepNCello, Sally L 01 April 2015 (has links) (PDF)
The primary contributor to Vibrio fischeri aminopeptidase activity is aminopeptidase N, PepN. Colonization assays revealed the pepN mutant strain to be deficient at forming dense aggregates and populating the host’s light organ compared to wildtype within the first 12 hours of colonization; however the mutant competed normally at 24 hours. To address the role of PepN in colonization initiation and establish additional phenotypes for the pepN mutant strain, stress response and other physiological assays were employed. Marked differences were found between pepN mutant and wildtype strain in response to salinity, acidity, and antibiotic tolerance. This study has provided a foundation for future work on identifying a putative role for V. fischeri PepN in regulating stress response.
|
26 |
The Stringent Response in Pseudomonas aeruginosa Influences the Phenotypes Controlled by the Gac/Rsm SystemHooker, Michael Shawn 01 May 2023 (has links)
Pseudomonas aeruginosa is a ubiquitous, opportunistic pathogen that causes acute and chronic infections. Infection is typically initiated via motile and virulent strains. After exposure to stressors, acute infections make both genotypic and phenotypic switches to a chronic, sessile strain. This is due to intricate regulatory networks directing gene expression in response to stressors. One network, GacA/GacS, has been established to control virulence factors. The stringent response of bacteria is mediated by alarmones produced primarily by RelA which responds to starvation.
To study the effect of the stringent response on the virulence switch. A series of experiments were run in both PAO1, a virulent strain, and PDO300, an acute strain, and RelA deletion mutants of each transcriptional fusions of GacA/GacA system were integrated in the wild-types and mutants. Alginate, swimming, twitching, and biofilm formation assays were performed on all. The preliminary data suggests that the stringent response influences the GacA/GacS system.
|
27 |
Development of a Prolyl Endopeptidase Expression System in <i>Lactobacillus Reuteri</i> to Reduce the Clinical Manifestation of Celiac DiseaseJew, Kara Lynn 01 July 2019 (has links) (PDF)
Celiac Disease (CD) is an autoimmune disorder that emerges due to the ingestion of gluten, a protein found in a variety of common grains such as wheat, rye, and barley. Approximately 1 in 100 individuals in the US suffer from CD, making it the most commonly diagnosed gastrointestinal disorder (Ciclitira et. al., 2005). These proline-rich gluten peptides are resistant to proteolysis and accumulate in the duodenum of the small intestine. Once in the duodenum, these peptides illicit an autoimmune response resulting in villous atrophy. Current treatment for CD requires a rigorous adherence to a gluten-free diet. Nevertheless, gluten-containing grains are ubiquitous in the western diet, so accidental
exposure to gluten remains as a persistent threat.
The approach of this project centers on genetically engineering a strain Lactobacillus reuteri to secrete a Myxococcus xanthus prolyl endopeptidase (PEP), an enzyme that hydrolyzes a peptide bond adjacent to an internal proline residue. The data from this study revealed that recombinant M. xanthus PEP purified from E. coli was effective in degrading Suc-Ala-Pro-pNA, a chromogenic substrate containing an internal proline residue. When introduced into a L. reuteri expression vector, mutations accumulated in the vector over the course of 5 days. These data suggested that toxicity was possibly associated with M. xanthus PEP and the amyl signal peptide.
|
28 |
Analysis and Optimization of Colorimetric Nanosensors for Rapid Detection of Microbes in WaterLang, Ruby A 01 June 2020 (has links) (PDF)
Access to safe water is a basic human right recognized by the United Nations General Assembly in 2010 (WHO, 2020). However, a least 2.2 billion people globally still are without safely managed water services meaning they use a drinking water source that can be contaminated with faeces (WHO, 2020). With such a pressing global health issue, it is clear that improvement to water systems is important and required in the Agenda 2030 Sustainable Development Goals (SDGs). However, to improve water systems and prove they are safe water sources, water quality testing must occur. A solution to this issue is the development of rapid detection sensors for pathogens in water. The first chapter of this thesis aims to create an informed list of rapid detection sensors that should be focused on for future development. This is achieved by using multicriteria decision analysis techniques based on using two consecutive processes. The first is the Analytic Hierarchy Process (AHP), which was used to develop weightings for criteria being measured for different sensor alternatives. The second process is the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS), which was used to perform the ranking of the sensors being reviewed based on the weighted criteria. The outcome of the multicriteria decision analysis was identifying the top 5 rapid detection nanosensors for future development. They can be further improved to include field scale applications while also achieving lower detection limits and shorter detection times. The cost for these sensors could possibly be reduced by changing the nanoparticles that the sensor is composed of. Through improved methods, the goal of creating a cost effective, rapid-detection nanosensor for bacteria (e.g., Shiga-toxin producing E. coli) in drinking water can be achieved by prioritization of research on these promising nanosensors. The second chapter of the thesis focuses on optimizing a gold nanosensor developed in 2015 by Raweewab T. and Rawiwan L, hereafter called the “Original Method.” The goal was to reduce the cost and improve the reusability of their indirect colorimetric gold nanosensor without compromising the simplicity of the detection platform. With a reusable and more cost-effective sensor, field applications for water quality testing in water system projects in impoverished areas can be more obtainable. The nanoparticle itself was the target of optimization in this study. The hypothesis was that the polyethylenimine (PEI) coating on the gold nanoparticle surface is the governing factor of how the sensor functions, meaning the core nanomaterial does not affect the function of the sensor. In this study, the results showed that sensor still maintained its function after replacing the PEI coated gold nanoparticle used in the Original Method with PEI coated silver nanoparticles. These findings indicated that with further development and future research, it will be possible to use less expensive nanoparticles for making the nanosensor. It will also be possible to make this sensor reusable through the development of PEI coated magnetite nanoparticles. Their magnetic quality could allow for recovering the nanosensors from the test media, then re-conditioned and used again.
|
29 |
sIHF IS A NOVEL NUCLEOID-ASSOCIATED PROTEIN SPECIFIC TO THE ACTINOBACTERIASwiercz, Julia P. 10 1900 (has links)
<p>The relatively recent discoveries of bacterial small RNAs (sRNAs) and their important regulatory functions prompted us to conduct a genome wide survey for sRNAs in <em>Streptomyces coelicolor</em>. We used a combined bioinformatics and experimental approach to identify and characterize six sRNAs. sRNA expression profiles were determined throughout <em>S. coelicolor</em> development, including vegetative and reproductive growth, during growth on minimal and rich media. Additionally, we also tested sRNA expression in various <em>S. coelicolor</em> developmental mutants. Two sRNAs were expressed exclusively during growth on one medium type and all but one were expressed constitutively throughout growth apart from the late sporulation timepoint. One of the identified sRNAs, scr1906, appeared to be closely associated with development. scr1906 was only expressed in nutrient limiting conditions just prior to aerial development and sporulation. Expression of scr1906 was abolished in a mutant that was defective in sporulation (due to a mutation in the sporulation sigma factor gene, <em>whiG</em>); however, expression was detected in mutants of both known σ<sup>WhiG</sup> target genes, <em>whiH</em> and <em>whiI</em>, which encode sporulation transcription factors. Intriguingly, <em>in silico</em> analysis predicted <em>whiH</em> to be a direct target for scr1906-mediated regulation based on potential nucleotide binding sites. The effects of deletion and overexpression of <em>scr1906</em> on WhiH levels were tested, but require further experimentation.</p> <p>In a separate line of investigation, we sought to characterize a novel actinobacterial-specific protein named sIHF. The <em>sIHF</em> mutant strain revealed that sIHF influenced DNA compaction and segregation during <em>S. coelicolor</em> sporulation and also affected antibiotic production. sIHF associated with the nucleoid, and <em>in vitro</em>, it bound to DNA non-specifically in a length dependent manner, although it was determined to have a preference for three distinct DNA motifs. Like most nucleoid-associated proteins, sIHF affected gene expression indicating the potential for an additional role as a transcription factor. Interestingly, sIHF impacted the activity of topoisomerase. Leveraging information that we have gained from the sIHF-DNA co-crystal complex, studies aimed at characterizing the sIHF regions that are important for DNA interaction and topoisomerase modulation are currently underway.</p> / Doctor of Philosophy (PhD)
|
30 |
Structure-Function Studies of the Trypanosome Mitochondrial Replication Protein POLIBArmstrong, Raveen 20 October 2021 (has links) (PDF)
Trypanosoma brucei and related protists are distinguished from all other eukaryotes by an unusual mitochondrial genome known as kinetoplast DNA (kDNA) that is a catenated network composed of minicircles and maxicircles. Replication of this single nucleoid involves a release, replicate, and reattach mechanism for the thousands of catenated minicircles and requires at least three DNA polymerase (POLIB, POLIC and POLID) with similarity to E. coli DNA polymerase I. Like other proofreading replicative DNA polymerases, POLIB has both an annotated polymerase domain and an exonuclease domain. Predictive modelling of POLIB indicates that it has the canonical right hand polymerase structure with a unique and large 369 amino acid insertion within the polymerase domain (thumb region) homologous to E. coli RNase T. The goal of this study was to evaluate whether the polymerase domain is necessary for the essential replicative role of POLIB. To study the structure-function relationship, an RNAi-complementation system was designed to ectopically express POLIB variants in T. brucei that has endogenous POLIB silenced by RNAi.Control experiments expressing an ectopic copy of POLIB wildtype (IBWTPTP) or polymerase domain mutant (IBPol-PTP) in the absence of RNAi did not impact fitness in procyclic cells despite protein levels being 5 - 8.5 fold higher than endogenous POLIB levels. Immunofluorescence detection of the tagged variants indicated homogenous expression of the variants in a population of cells and negligible changes in kDNA morphology. Lastly, Southern blot analyses of cells expressing the IBWTPTP or IBPol-PTP variants indicated no changes in free minicircle species.
A dually inducible RNAi complementation system was designed and tested with the IBWTPTP and IBPol-PTP variants. Inductions of POLIB RNAi accompanied by ectopic expression of either variant using the standard 1 mg/ml tetracycline resulted in low protein levels of both variants while knockdown of the endogenous POLIB mRNA was greater than 85%. Increasing the tetracycline concentration to 4 mg/ml improved expression levels of both variants. However, levels of the ectopically expressed variants never exceeded that of endogenous POLIB. Using the 4 mg/ml induction conditions, complementation with IBWTPTP resulted in a partial rescue of the POLIB RNAi phenotype based on fitness curves, quantification of kDNA content and Southern blot analysis of free minicircles. IBWTPTP complementation resulted in gradual increase of IBWTPTP protein levels over the 10 day induction, and a small kDNA phenotype instead of the progressive loss of kDNA normally associated with POLIB RNAi. Additionally, the loss of free minicircles was delayed.
Complementation with the IBPol-PTP variant produced more consistent levels of IBPol-PTP protein although still below endogenous POLIB levels. Loss of fitness was similar to POLIB RNAi alone. However, a small kDNA phenotype emerged early after just four days of complementation and persisted for the remainder of the induction. The majority of the IBRNAi + IBPol-PTP population (70%) contained small kDNA compared to the parental POLIB RNAi or IBWTPTP complementation that had only 45% and 50% small kDNA, respectively. Lastly, the pattern of free minicircle loss closely resembled POLIB RNAi alone. Together, these data suggest that the dually inducible system results in a partial rescue with the IBWTPTP variant. Rescue with IBPol-PTP variant results in a noticeably different phenotype from either POLIB RNAi alone or IBWTPTP complementation indicating that the POLIB polymerase domain is likely essential for the in vivo role of POLIB during kDNA replication.
|
Page generated in 0.0486 seconds