• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 26
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 50
  • 39
  • 34
  • 25
  • 25
  • 23
  • 23
  • 21
  • 19
  • 17
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A tale of two RLPAs : studies of cell division in Escherichia coli and Pseudomonas aeruginosa

Jorgenson, Matthew Allan 01 July 2014 (has links)
Rare lipoprotein A (RlpA) has been studied previously only in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. In this thesis, we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in media of low osmotic strength. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from a ΔrlpA mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called "naked glycans"). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Collectively, these findings indicate RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall. Our discovery that RlpA from P. aeruginosa is a lytic transglycosylase motivated us to reinvestigate RlpA from E. coli. We confirmed predictions that RlpA of E. coli is an outer membrane protein and determined its abundance to be about 600 molecules per cell. However, multiple efforts to demonstrate that E. coli RlpA is a lytic transglycosylase were unsuccessful and the function of this protein in E. coli remains obscure.
42

Functional characterization of the small antisense RNA MicA in Escherichia coli

Udekwu, Klas Ifeanyi January 2007 (has links)
<p>The Escherichia coli small RNA (sRNA) MicA was identified recently in a genomewide search for sRNAs. It is encoded between the genes <i>gshA</i> and <i>luxS</i> in E. coli and its close relatives. The function of sRNAs in bacteria is generally believed to be in maintenance of homeostasis via stress-induced modulation of gene expression. Our studies on MicA have been aimed at attributing function(s) to this molecule.</p><p>We carried out high throughput assays aimed at identifying genes that are differentially regulated upon knocking out or overexpressing MicA. Among the protein candidates identified was the outer membrane protein, OmpA. Subsequent analysis allowed us to show this regulation to be antisense in nature with MicA binding within the translation initiation region of <i>ompA</i> mRNA. Furthermore, blocking the ribosome from loading caused a translational decoupling that instigates degradation of the mRNA. The regulation was apparent in early stationary phase and seen to be dependent on the RNA chaperone Hfq. </p><p>We went on to characterize the regulation of MicA, looking at its own transcription. Testing various stress conditions, we were able to identify putative promoter elements that we confirmed using transcriptional fusions. The results showed MicA to be dependent on the extracytoplasmic function ECF sigma E (σ<sup>E</sup>) and could not detect MicA in mutants deleted for this factor.</p><p>Lastly, we identified an additional target for MicA being the adjacently encoded <i>luxS</i> mRNA. The LuxS protein is essential for the synthesis of the quorum sensing AI-2 molecule. Transcription of the <i>luxS </i>mRNA is commences within the <i>gshA</i> gene, on the other side of MicA coding region. We were able to show that MicA interacts with <i>luxS </i>mRNA and is recognized by RNase III which processes this complex leading to a shorter <i>luxS</i> mRNA isoform. The significance of this processing event is as yet undetermined. Our data elucidated a new promoter driving transcription of <i>luxS,</i> and we demonstrated this promoter to be stationary phase responsive.</p><p>In summary, the work presented here characterizes the sRNA MicA as a dual regulatory sRNA molecule, moonlighting between its cis-encoded target and its trans-encoded target. .</p>
43

Structural and functional analysis of Toc75

Dave, Ashita Mukul 01 December 2010 (has links)
The majority of chloroplast proteins are nuclear-encoded and post-translationally imported into the chloroplast. These newly imported proteins are translocated from the cytosolic compartment to the stroma by the Translocons of the Outer/Inner membranes of Chloroplast (TOC/TIC). In order to understand protein transport across the chloroplast outer membrane, it is crucial to investigate the structure and function of these complexes. The TOC complex is composed of the beta-barrel channel protein Toc75 and the GTPase receptors Toc34 and Toc159. Toc75 is a member of the OMP85 (Outer Member Protein, 85 kDa) superfamily. Other proteins of the OMP85 superfamily also exist in Gram-negative bacteria and mitochondria. The members of this family contain a C-terminal transmembrane beta-barrel and a soluble N-terminus with a varying numbers of POTRA (POlypeptide TRansport Associated) domains. The recent crystal structures of the POTRA domains of Gram-negative bacteria reveal that these domains are localized in the periplasmic side. This thesis identifies the orientation of the POTRA domains as being localized in the cytosol and provides initial evidence for their involvement in the protein import. Three POTRA domains of psToc75 were identified, purified in E. coli and characterized by MALDI-TOF mass spectrometry and circular dichroism. Using variety of immunofluorescence methods, such as flow cytometry and LSCM, the topology of the POTRA domains was investigated. Chloroplast agglutination assays were used to assess the location of immuno-reactive fragments of the POTRA domains, which supported the results from the flow cytometry and LSCM. Finally, thermolysin was used to probe the surface of the isolated intact chloroplasts. Proteolytic digestion along with the data obtained from flow cytometry, LSCM and agglutination assays suggested the orientation of the N-terminal POTRA domains facing the cytosol, followed by a C-terminal beta-barrel domain. The import competence of individual POTRA domains was determined by in vitro chloroplast import and binding competition assays. POTRA1 inhibited the binding of the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase to intact chloroplasts, while POTRA3 inhibited the import of radiolabeled precursors into isolated chloroplasts; however, in both assays, the inhibition of precursor binding and import was to a lesser extent than non-labeled prSSU.
44

Outer membrane vesicle-mediated export of virulence factors from Gram-negative bacteria

Rompikuntal, Pramod Kumar January 2012 (has links)
The Gram-negative, motile bacterium Campylobacter jejuni is a causative agent of food-borne gastroenteritis. Cytolethal distending toxin (CDT) is one of the important virulence factors for C. jejuni pathogenesis. It was not previously known how CDT is released from C. jejuni into the surrounding environment. In our study, CDT proteins were observed in the periplasmic fraction and all CDT subunits from C. jejuni were released from the bacterial cells in association with OMVs. The OMV-associated toxin caused cytolethal distending effects on tissue culture cells. Our results strongly suggest that the release of OMV-associated CDT is a route by which C. jejuni delivers all CDT toxin subunits (CdtA, CdtB, and CdtC) to the surrounding environment, including infected host tissue.The Gram-negative, motile bacterium Vibrio cholerae is primarily known as the causal organism of the severe dehydrating diarrheal disease cholera. OMVs released from non-O1 non-O139 V. cholerae (NOVC) strain V:5/04 induced an inflammatory response in human host cells. The inflammatory potential is mediated by the nucleotide-binding domain, leucine-rich repeat containing family members NOD1 and NOD2. Physiochemical analysis in conjunction with NOD1/2 reporter assays in HEK293T cells confirmed the presence of the NOD1/2 active peptidoglycan (PGN) in OMVs. Deletion of the quorum sensing master regulator HapR specifically reduced the inflammatory potential of the V:5/04 OMVs and their ability to activate NOD1 and NOD2. These findings suggest that OMVs from a NOVC strain delivered PGN to the host cells, where they elicited an immune response mediated by NOD1 and NOD2.The Gram-negative, non-motile coccobacillus Aggregatibacter actinomycetemcomitans is a natural inhabitant of the oral cavity, but the bacterium can translocate from the oral cavity into the bloodstream and thereby be transported to other regions of the body. A. actinomycetemcomitans is implicated in aggressive forms of periodontitis. The mechanism behind this aggressive periodontitis was not fully known. In addition to several virulence factors, this organism also produces CDT. We have demonstrated that OMVs released by A. actinomycetemcomitans contain several virulence factors, including CDT. We showed that OMVs delivered CDT to the host cells and that CDT was localized inside the nucleus, which led to a cytolethal distending effect on two different cell lines tested: HeLa cells and human gingival fibroblasts (HGF). These results suggest that A. actinomycetemcomitans OMVs could deliver biologically active CDT toxin into the periodontal tissue and may contribute to periodontitis.In our earlier studies, we discovered that an M6 family metalloprotease PrtV was an essential factor for V. cholerae survival from predator grazing. Pure PrtV protein effectively degraded human blood plasma components. In addition, it also showed a dose-dependent cytotoxic effect in the human intestinal HCT8 cell line. V. cholerae produces a large amount of outer membrane vesicles (OMVs) during the normal course of cell growth. OMVs are composed of periplasmic proteins, membrane lipids, lipopolysaccharides and outer membrane proteins. We showed that OMVs can transport several biologically active toxins and enzymes to the surrounding environment and ultimately into the host cells. We have initiated analysis of OMV-associated secretion of virulence factors in V. cholerae. It was observed that PrtV is secreted from V. cholerae wild type strain C6706 into the culture supernatant in association with OMVs and OMV-associated PrtV protein is biologically active and more stable than the free, soluble PrtV protease.
45

Functional characterization of the small antisense RNA MicA in Escherichia coli

Udekwu, Klas Ifeanyi January 2007 (has links)
The Escherichia coli small RNA (sRNA) MicA was identified recently in a genomewide search for sRNAs. It is encoded between the genes gshA and luxS in E. coli and its close relatives. The function of sRNAs in bacteria is generally believed to be in maintenance of homeostasis via stress-induced modulation of gene expression. Our studies on MicA have been aimed at attributing function(s) to this molecule. We carried out high throughput assays aimed at identifying genes that are differentially regulated upon knocking out or overexpressing MicA. Among the protein candidates identified was the outer membrane protein, OmpA. Subsequent analysis allowed us to show this regulation to be antisense in nature with MicA binding within the translation initiation region of ompA mRNA. Furthermore, blocking the ribosome from loading caused a translational decoupling that instigates degradation of the mRNA. The regulation was apparent in early stationary phase and seen to be dependent on the RNA chaperone Hfq. We went on to characterize the regulation of MicA, looking at its own transcription. Testing various stress conditions, we were able to identify putative promoter elements that we confirmed using transcriptional fusions. The results showed MicA to be dependent on the extracytoplasmic function ECF sigma E (σE) and could not detect MicA in mutants deleted for this factor. Lastly, we identified an additional target for MicA being the adjacently encoded luxS mRNA. The LuxS protein is essential for the synthesis of the quorum sensing AI-2 molecule. Transcription of the luxS mRNA is commences within the gshA gene, on the other side of MicA coding region. We were able to show that MicA interacts with luxS mRNA and is recognized by RNase III which processes this complex leading to a shorter luxS mRNA isoform. The significance of this processing event is as yet undetermined. Our data elucidated a new promoter driving transcription of luxS, and we demonstrated this promoter to be stationary phase responsive. In summary, the work presented here characterizes the sRNA MicA as a dual regulatory sRNA molecule, moonlighting between its cis-encoded target and its trans-encoded target. .
46

Vesicle-independent extracellular release and bioactivity of peptidoglycan-associated lipoprotein from Aggregatibacter actinomycetemcomitans

Karched, Maribasappa January 2007 (has links)
Aggregatibacter (Actinobacillus) actinomycetemcomitans is a Gram-negative coccobacillus of the Pasteurellaceae family. It is implicated in periodontitis, a common low-grade bacterial infection, but it can also cause non-oral infections. The main aim of this project was to identify and characterize in A. actinomycetemcomitans novel cell surface components bearing virulence potential that could contribute to systemic immunoinflammatory burden. We first established and evaluated a method for preparing homogeneous cell suspensions of autoaggregating clinical isolates of A. actinomycetemcomitans. The chosen method is based on a gradual dispersion of bacterial colonies into solution, which generated homogeneous suspensions without losing cell viability or fimbriation. When sera from two patients with A. actinomycetemcomitans-associated infections were used to probe A. actinomycetemcomitans outer membrane protein (OMP) preparations in western blot, strong reactions were found at 17 kDa. Interestingly, antiserum against CsgA, a major subunit of Eschirichia coli curli, also reacted with A. actinomycetemcomitans OMP preparations at 17 kDa size, that is the size of E. coli CsgA, suggesting antigenic crossreactivity. The 17 kDa A. actinomycetemcomitans OMP was subsequently identified as peptidoglycan-associated lipoprotein (PAL; AaPAL) by using immunoproteomics methods. Studies on the pal gene and its gene product showed that they were conserved among the clinical A. actinomycetemcomitans isolates representing all currently known serotypes. AaPAL expression was shown under different nutritional and atmospheric conditions that resembled those in periodontal pockets. PAL deficiency in turn led to pleiotropic effects on the phenotype of A. actinomycetemcomitans, such as cell elongation and decreased growth rate. To purify AaPAL we employed affinity chromatography using anti-AaPAL peptide antibodies. The extensive characterization of the purified AaPAL by SDS-PAGE gel staining and mass spectrometry demonstrated that the final purification product did not contain other bacterial proteins than AaPAL. The protein had not lost its antigenicity during purification, since it was recognized by sera from patients with A. actinomycetemcomitans-associated oral and nonoral infections. AaPAL also appeared to be a strongly immunoreactive antigen in patients with periodontitis whose serum IgG antibodies recognized in western blot a 17 kDa OMP in the parental strain but not in the pal-deficient mutant. In addition to its immunogenicity, AaPAL also induced proinflammatory cytokine and chemokine response from human whole blood as determined by a cytokine antibody array. A cell culture insert model was designed to study how bacterial components could be introduced to the host in infections. The experiments demonstrated that live bacteria released extracellularly free-soluble AaPAL, but also other components, via an unknown outer membrane vesicle-independent mechanism. The immunogenicity and proinflammatory potential of the previously uncharacterized outer membrane lipoprotein of A. actinomycetemcomitans, AaPAL, suggests that it contributes to the pathogenicity of this bacterium. That live A. actinomycetemcomitans cells released free-soluble cell components may represent a new pathogenic mechanism.
47

Modulators of Vibrio cholerae predator interaction and virulence

Lindmark, Barbro January 2009 (has links)
Vibrio cholerae, the causal agent of cholera typically encodes two critical virulence factors: cholera toxin (CT), which is primarily responsible for the diarrhoeal purge, and toxin-co-regulated pilus (TCP), an essential colonisation factor. Nontoxigenic strains expressing TCP can efficiently acquire the CT gene through lysogenic conversion with CTXΦ, a filamentous phage that encodes CT and uses TCP as a receptor.  V. cholerae is a Gram-negative bacterium and a natural inhabitant of estuarine and coastal waters throughout both temperate and tropical regions of the world. In the aquatic environment, V. cholerae encounters several environmental stresses, such as change in salinity, UV stress, nutrient limitation, temperature fluctuations, viral infections and protozoan predation. To fully understand the pathogenic and virulence potential of V. cholerae, knowledge is required of its interactions with, not only human, but also environmental factors. By using the nematode Caenorhabditis elegans as host model, we were able to identify a previously uncharacterised protein, the extracellular protease PrtV. PrtV was shown to be required for the killing of. elegans and also necessary for survival from grazing by the ciliate Tetrahymena pyriformis and the flagellate Cafeteria roenbergensis. The PrtV protein, which belongs to a M6 family of metallopeptidases was cloned and purified for further characterisations. The purified PrtV was cytotoxic against the human intestinal cell line HCT8. By using human blood plasma, fibrinogen, fibronectin and plasminogen were identified as candidate substrates for the PrtV protease. Outer membrane vesicles (OMVs) are released to the surroundings by most Gram-negative bacteria through “bulging and pinching” of the outer membrane.  OMVs have been shown to contain many virulence factors important in pathogenesis. Therefore, we investigated the association of PrtV with OMVs. PrtV was not associated with OMVs from the wild type O1 strain. In contrast, in an LPS mutant lacking two sugar chains in the core oligosaccharide PrtV was found to be associated with the OMVs. The OMV-associated PrtV was shown to be proteolytically and cytotoxically active. V. cholerae strains are grouped into &gt;200 serogroups. Only the O1 and O139 serogroups have been associated with pandemic cholera, a severe diarrhoeal disease.  All other serogroups are collectively referred to as non-O1 non-O139 V. cholerae. Non-O1 non-O139 V. cholerae can cause gastroenteritis and extraintestinal infections, but unlike O1 and O139 strains of V. cholerae, little is known about the virulence gene content and their potential to become human pathogens. We analysed clinical and environmental non-O1 non-O139 isolates for their putative virulence traits. None of them carry the genes encoding CT or the TCP, but other putative virulence factors were present in these isolates. The incidence of serum resistance was found to vary considerably and was independent of encapsulation. Three strains were strongly serum-resistant, and these same strains could also kill C. elegans.
48

Outer membrane proteins of Yersinia pestis : Ail and OmpA

Schesser Bartra, Sara Celinda January 2010 (has links)
A vast number of studies have been completed on the virulence determinants of Yersinia spp.; however, the focus of many of these studies has been on the virulence plasmid and the plasmid-encoded Type three secretion system. Nevertheless, many chromosomal genes whose products are directly involved in virulence have also been identified. Some of these critical virulence determinants are outer membrane proteins. Outer membrane proteins of Gram-negative bacteria often have important physiological roles; however, some have also been found to be important for pathogenesis. In this thesis, we investigated two Yersinia. pestis outer membrane proteins, Ail and OmpA, and their roles in virulence. We provide evidence that Y. pestis Ail is a highly expressed outer membrane protein that is absolutely essential for Y. pestis to resist the killing action of the complement system present in human blood and tissues, as well as the blood and tissues of other mammalian hosts. Furthermore, Ail was important for virulence in a Y. pestis-Canorhabditis elegans model of infection.The work in this thesis also provided the first evidence that another surface-exposed outer membrane protein, termed OmpA, is required for both Yersinia pseudotuberculosis and Y. pestis to survive and proliferate intracellularly in macrophages. Finally, we provide evidence that Y. pestis has a functional small RNA MicA that controls the expression of OmpA. This is the first demonstration of sRNA-mediated regulation of a Yersinia virulence factor. This work has paved the way for future studies on the role of outer membrane proteins in virulence, particularly the role of Ail and OmpA.
49

Size Dependent Antimicrobial Properties of Sugar Encapsulated Gold Nanoparticles

Vangala, Lakshmisri Manisha 29 May 2012 (has links)
The antimicrobial properties of dextrose encapsulated gold nanoparticles (dGNPs) with average diameters of 25 nm, 60 nm, and 120 nm (± 5 nm) synthesized by green chemistry principles were investigated against both Gram-negative and Gram-positive bacteria. Studies were performed involving the effect of the dGNPs on the growth, morphology and the ultrastructural properties of bacteria. dGNPs were found to have significant dose dependent antibacterial activity which was directly proportional to their size and also their concentration. The microbial assays revealed the dGNPs to be bacteriostatic as well as bactericidal. The dGNPs exhibited their bactericidal action through the disruption of the bacterial cell membrane causing leakage of cytoplasmic content. The overall outcomes of this study suggest that dGNPs hold promise as a potent antimicrobial agent against a wide range of disease causing bacteria and can control and prevent possible infections or diseases.
50

Antiserum titer determination and adherence comparison of three major outer membrane proteins TSA56, TSA47 and TSA22 in Orientia tsutsugamushi

Lin, Tung-cheng 07 September 2011 (has links)
Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular pathogen. Recent studies show that the complete genome sequence of Orientia tsutsugamushi have been determined. However, the early signaling events involved in the entry of O.tsutsugamushi into mammalian cells remains a challenge. In this study, we demonstrate that adherence ability and comparison of three major outer membrane protein TSA56, TSA47 and TSA22 of O.tsutsugamushi. Through expression and purification of three type-specific antigen 56-kDa (include TSA56-antigen domain I, TSA56-antigen domain III), 47-kDa and 22-kDa of O. tsutsugamushi , antiserum immunoblots from 22 clinical O. tsutsugamushi-infected patients and in vitro adhesion assay of E.coli overexpression outer membrane protein of O. tsutsugamushi , the antiserum titer and adherence ability of bacterial outer membrane proteins are determined. The data show that antiserum titer against three major outer membrane proteins of O. tsutsugamushi was markedly higher in TSA56 compared to TSA47 and TSA22. In adhesion assay, adhesion of host cells by TSA56 was readily than TSA47 and TSA22. Furthermore, adhesion experiment and antiserum titer against antigen-domain I (ADI) region (19-114 aa) in the extracellular domain of TSA56 was also significantly higher than previously reported antigen-domain III(ADIII) region (237-366 aa) which facilitates the invasion of O. tsutsugamushi through interaction with fibronectin .Taken together, these results clearly indicate that O. tsutsugamushi exploits TSA56-mediated bacterial adhesion, abundant antiserum titer and ADI region of TSA56 may draw another adhesion site (except for previously reported ADIII) to invade eukaryotic host cells.

Page generated in 0.0922 seconds