• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 25
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modellering och simulering av det evaporativa bränslesystemet i en personbil / Modeling and simulation of the evaporative fuelsystem in an automobile

Ikonen, Johan January 2005 (has links)
This thesis work has been performed at the department of diagnosis and dependability at Volvo Car Company, Torslanda. The background of this project is based on interest in ascertaining how different factors possibly can affect a diagnosis method, which has been developed to find leaks in the fuel tank and evaporation system. According to the OBD II requirements leaks with an orifice diameter larger or equal to 0,5 mm, must be detected. The idea of the diagnosis method is to create an over pressure in the system with an air-pump. The current through the pump is measured and correlates to the power consumed by the pump. As the power is a function of the pressure difference over the pump, the pump current correlates to the pressure in the tank. Thus, the pump current can be used as a measure of the impenetrability. Changes in the system pressure, not caused by the pump, are accordingly disturbances to the method. The object of this work was to develop mathematical models, describing the lapse where the system is pressurized by the pump under the influence of different physical factors. The model is for instance considering variations in temperature and height, flow resistance in lines and valves, component characteristics, fuel evaporation, leaks etc. Furthermore the pump current is treated by the diagnosis evaluation algorithm with purpose to judge whether there is a leak in the system. The model has been implemented in Matlab/Simulink and it can consequently be used in dynamic simulations according to the over pressure leakage detection concept. Numerical experiments can be done in purpose to examine how changes in environmental conditions or component characteristics will affect the diagnosis method. Good agreement has been found between measurements and simulated results. The diagnosis function produces correct decisions under different conditions with disparity in leak sizes, additionally confirming the reliability of the model.
12

TRAUMATIC BRAIN INJURY: CYCLOPHILIN D AS A THERAPEUTIC TARGET AND THE NEUROPATHOLOGY CAUSED BY BLAST

Readnower, Ryan Douglas 01 January 2011 (has links)
With an estimated incidence of 1.5 million each year, traumatic brain injury (TBI) is a major cause of mortality and morbidity in the United States. Opening of the mitochondrial permeability transition pore (mPTP) is a key event contributing to TBI pathology. Cyclophilin D (CypD), a matrix peptidyl-prolyl cis-trans isomerase, is believed to be the regulating component of the mPTP. Cyclosporin A, an immunosuppressant drug, inhibits CypD and blocks mPTP formation and has been shown to be neuroprotective following TBI. However, it is unclear if CsA’s neuroprotective mechanism is due to inhibition of CypD and/or immuno-suppression. Therefore to directly assess the contribution of CypD to TBI pathology, CypD knockout mice were subjected to a controlled cortical impact model of TBI. CypD ablation resulted in increased tissue sparing, hippocampal protection, and improved mitochondrial complex I driven respiration. Next a dose-response study of the Cyclophilin D inhibitor, NIM811, was performed. NIM811 administration following TBI resulted in improved cognition, increased tissue sparing, and improved mitochondrial function. These results suggest a major role for CypD in TBI pathology and validate CypD as a potential therapeutic target for TBI. TBI has been proposed to be the signature injury of the current Middle Eastern conflicts with an estimated prevalence of 15-60 % among combat soldiers. Although the brain does appear to be vulnerable to blast, the exact mechanisms underlying the injury remain unclear. Adult male Sprague-Dawley rats were exposed to a moderate level of blast overpressure. Following blast, blood brain barrier disruption was evident at 3 and 24 h post-exposure, oxidative damage increased at 3 h post-exposure, and microglia were activated in the hippocampus at 5 and 10 days post-exposure. This may widen future neuroprotective avenues for blast since blast brain injury appears to share similar mechanisms of injury with other TBI models.
13

EVALUATION OF OVERPRESSURE WAVE TRANSITION BY AIRBLAST OVERPRESSURE AND SHOCK WAVE ATTENUATION ANALYSIS USING A SMALL BLACK POWDER CHARGE

Weitzel, William R 01 January 2014 (has links)
Eight flush mount pressure sensors were used in a series of 3 test sequences to measure air overpressure produced by a firecracker. Overpressure was recorded at a range of 1 inch to 21 inches away from detonation, and charge weight was determined to be 0.1mg of black powder. Air overpressure prediction equations were developed from test series then compared to collected data for subsequent tests. Overpressure wave velocity was measured using wave arrival time and distance between sensors. This wave velocity was compared to calculated wave velocity using overpressure and ideal gas law. Overpressure and wave velocity are directly related to each other in shock wave behavior. The goal of these tests was to identify at what point the in elastic-plastic region the overpressure wave no longer closely resembled a shock wave, but an elastic wave instead.
14

Performance and safety of centrifugal chillers using hydrocarbons.

Tadros, Amir, The University of New South Wales. School of Mechanical & Manufacturing Engineering, UNSW January 2008 (has links)
The high ozone depletion and global warming potentials of fluorocarbon refrigerants have resulted in prohibitions and restrictions in many markets. Hydrocarbon refrigerants have low environmental impacts and are successfully used in domestic refrigerators and car air conditioners but replacing fluorocarbons in centrifugal chillers for air conditioning applications is unknown. Hydrocarbon replacements need a heat transfer correlation for refrigerant in flooded evaporators and predictions for operating conditions, capacity and performance. Safety precautions for large quantities of hydrocarbon refrigerants are needed and control of overpressure in plantrooms requires accurate prediction. Reliable correlations exist for forced convection in a single phase flow, condensation outside tubes and evaporation off sprayed tubes. For flooded evaporators this thesis proposes a new correlation for forced convection boiling of any refrigerant. An enhancement factor is combined with a modified Chen coefficient using recent pool boiling and forced convection correlations outside tubes. This correlates within typically a factor of two to known boiling literature measurements for CFC-113, CFC-11, HCFC-123, HFC-134a and HC-601. The operating conditions, capacity and performance of replacement hydrocarbons in centrifugal chillers were predicted using fluorocarbon performance as a model. With the new heat transfer correlation hydrocarbon predictions for flooded evaporators were made. For any fluorocarbon refrigerant there exists a replacement mixture of hydrocarbons which with a rotor speed increase about 40% gives the same cooling capacity in the same centrifugal chiller under the same operating conditions. For example replacing HCFC-123 in a flooded evaporator with HC-601/602 [90.4/9.6] and increasing the rotor speed by 43% will increase the coefficient of performance by 4.5% at the same cooling capacity. The maximum plantroom overpressure considered was from leakage and ignition of a uniform air/refrigerant mixture with maximum laminar burning velocity. Flow was modelled using a turbulence viscosity due to Launder and Spalding and turbulent deflagration using a reaction progress variable after Zimont. These partial differential equations were solved approximately for two and three dimensional geometries using finite volume methods from the Fluent program suite. Simple overpressure predictions from maximum flame area approximations agreed with Fluent results within 13.7% promising safe plantroom design without months of computer calculation.
15

Modelo para setorização de redes de distribuição de água / Model for water distribution networks sectorization

Mariana Rivera Freire 15 March 2017 (has links)
Perdas de água em redes de distribuição acontecem por diversas razões, uma delas, o excesso de pressão, pode ser prevenido através da divisão das redes em Distritos de Medição e Controle. Este método vem sendo utilizado há algum tempo como modo de prevenir sobrepressão na rede, aumentando a confiabilidade e vida útil das tubulações e dispositivos do sistema. Atualmente, alguns autores propõem diferentes tipos de metodologias para uma eficiente definição de Distritos de Medição e Controle. Neste trabalho foi criada e aplicada uma metodologia baseada no estudo de uma área (Setor Aracy) na cidade de São Carlos - SP guiado por análise topográfica. A rede de distribuição do setor de abastecimento foi analisada indicando um subdimensionamento em alguns trechos, assim como, foi concluído que já existe uma setorização na área que não foi guiada por análise topográfica e sim por implantação dos loteamentos. Um estudo de setorização que tem como objetivo o gerenciamento de pressões deve ser norteado por análise da topografia do local juntamente com dispositivos gerenciadores de pressão (válvulas, boosters etc). / Water losses in network distribution systems may happen due to many reasons, one of them, the overpressure, can be prevented through the partitioning of these networks in District Metered Areas. This method has been used for some time as a way of preventing network overpressure, enhancing the reliability and lifespan of pipes and system devices. Currently, some authors propose different methodologies to an efficient delimitation of the District Metered Areas. In this work, a methodology was conceived and applied based on the study of an area (Aracy Sector) in the city of São Carlos - SP guided by topographic analysis. The distribution network of the supply sector was analyzed indicating an undersize in some pipes, as well as, it was concluded that a sectorization already exists in the area that is not guided by topographic analysis, but by the implementation of the allotments. A sectorization study that aims to manage pressures should be guided by topographic analysis of the site, together with pressure management devices (valves, boosters etc).
16

Understanding the plume dynamics and risk associated with CO₂ injection in deep saline aquifers

Gupta, Abhishek Kumar 12 July 2011 (has links)
Geological sequestration of CO₂ in deep saline reservoirs is one of the ways to reduce its continuous emission into the atmosphere to mitigate the greenhouse effect. The effectiveness of any CO₂ sequestration operation depends on pore volume and the sequestration efficiency of the reservoir. Sequestration efficiency is defined here as the maximum storage with minimum risk of leakage to the overlying formations or to the surface. This can be characterized using three risk parameters i) the time the plume takes to reach the top seal; ii) maximum lateral extent of the plume and iii) the percentage of mobile CO₂ present at any time. The selection among prospective saline reservoirs can be expedited by developing some semi-analytical correlations for these risk parameters which can be used in place of reservoir simulation study for each and every saline reservoir. Such correlations can reduce the cost and time for commissioning a geological site for CO₂ sequestration. To develop such correlations, a database has been created from a large number of compositional reservoir simulations for different elementary reservoir parameters including porosity, permeability, permeability anisotropy, reservoir depth, thickness, dip, perforation interval and constant pressure far boundary condition. This database is used to formulate different correlations that relate the sequestration efficiency to reservoir properties and operating conditions. The various elementary reservoir parameters are grouped together to generate different variants of gravity number used in the correlations. We update a previously reported correlation for time to hit the top seal and develop new correlations for other two parameters using the newly created database. A correlation for percentage of trapped CO₂ is also developed using a previously created similar database. We find that normalizing all risk parameters with their respective characteristic values yields reasonable correlations with different variants of gravity number. All correlations confirm the physics behind plume movement in a reservoir. The correlations reproduce almost all simulation results within a factor of two, and this is adequate for rapid ranking or screening of prospective storage reservoirs. CO₂ injection in saline reservoirs on the scale of tens of millions of tonnes may result in fracturing, fault activation and leakage of brine along conductive pathways. Critical contour of overpressure (CoP) is a convenient proxy to determine the risk associated with pressure buildup at different location and time in the reservoir. The location of this contour varies depending on the target aquifer properties (porosity, permeability etc.) and the geology (presence and conductivity of faults). The CoP location also depends on relative permeability, and we extend the three-region injection model to derive analytical expressions for a specific CoP as a function of time. We consider two boundary conditions at the aquifer drainage radius, constant pressure or an infinite aquifer. The model provides a quick tool for estimating pressure profiles. Such tools are valuable for screening and ranking sequestration targets. Relative permeability curves measured on samples from seven potential storage formations are used to illustrate the effect on the CoPs. In the case of a constant pressure boundary and constant rate injection scenario, the CoP for small overpressures is time-invariant and independent of relative permeability. Depending on the relative values of overall mobilities of two-phase region and of brine region, the risk due to a critical CoP which lies in the two-phase region can either increase or decrease with time. In contrast, the risk due to a CoP in the drying region always decreases with time. The assumption of constant pressure boundaries is optimistic in the sense that CoPs extend the least distance from the injection well. We extend the analytical model to infinite-acting aquifers to get a more widely applicable estimate of risk. An analytical expression for pressure profile is developed by adapting water influx models from traditional reservoir engineering to the "three-region" saturation distribution. For infinite-acting boundary condition, the CoP trends depend on same factors as in the constant pressure case, and also depend upon the rate of change of aquifer boundary pressure with time. Commercial reservoir simulators are used to verify the analytical model for the constant pressure boundary condition. The CoP trends from the analytical solution and simulation results show a good match. To achieve safe and secure CO₂ storage in underground reservoirs several state and national government agencies are working to develop regulatory frameworks to estimate various risks associated with CO₂ injection in saline aquifers. Certification Framework (CF), developed by Oldenburg et al (2007) is a similar kind of regulatory approach to certify the safety and effectiveness of geologic carbon sequestration sites. CF is a simple risk assessment approach for evaluating CO₂ and brine leakage risk associated only with subsurface processes and excludes compression, transportation, and injection-well leakage risk. Certification framework is applied to several reservoirs in different geologic settings. These include In Salah CO₂ storage project Krechba, Algeria, Aquistore CO₂ storage project Saskatchewan, Canada and WESTCARB CO₂ storage project, Solano County, California. Compositional reservoir simulations in CMG-GEM are performed for CO₂ injection in each storage reservoir to predict pressure build up risk and CO₂ leakage risk. CO₂ leakage risk is also estimated using the catalog of pre-computed reservoir simulation results. Post combustion CO₂ capture is required to restrict the continuous increase of carbon content in the atmosphere. Coal fired electricity generating stations are the dominant players contributing to the continuous emissions of CO₂ into the atmosphere. U.S. government has planned to install post combustion CO₂ capture facility in many coal fired power plants including W.A. Parish electricity generating station in south Texas. Installing a CO₂ capture facility in a coal fired power plant increases the capital cost of installation and operating cost to regenerate the turbine solvent (steam or natural gas) to maintain the stripper power requirement. If a coal-fired power plant with CO₂ capture is situated over a viable source for geothermal heat, it may be desirable to use this heat source in the stripper. Geothermal brine can be used to replace steam or natural gas which in turn reduces the operating cost of the CO₂ capture facility. High temperature brine can be produced from the underground geothermal brine reservoir and can be injected back to the reservoir after the heat from the hot brine is extracted. This will maintain the reservoir pressure and provide a long-term supply of hot brine to the stripper. Simulations were performed to supply CO₂ capture facility equivalent to 60 MWe electric unit to capture 90% of the incoming CO₂ in WA Parish electricity generating station. A reservoir simulation study in CMG-GEM is performed to evaluate the feasibility to recycle the required geothermal brine for 30 years time. This pilot study is scaled up to 15 times of the original capacity to generate 900 MWe stripping system to capture CO₂ at surface. / text
17

Reator airlift operado em sobrepressão: construção, caracterização da transferência de oxigênio e aplicação em cultivos de Escherichia coli recombinante

Campani Junior, Gilson 15 August 2014 (has links)
Made available in DSpace on 2016-06-02T19:56:54Z (GMT). No. of bitstreams: 1 5933.pdf: 2457795 bytes, checksum: b5b6653a532bc7e6c4a9ec2685b55277 (MD5) Previous issue date: 2014-08-15 / Universidade Federal de Minas Gerais / Owing to the broad biochemical, physiological and genetic characterization and the ease of manipulation and cultivation, several proteins with therapeutic and industrial applications are produced by genetically modified Escherichia coli. There is abundant information in the literature about strategies to increase biomass and recombinant protein production by cultivation of E. coli employing stirred and aerated tank bioreactor (conventional type). In contrast, although quite employed in cultivation of filamentous microorganisms, there are just a few studies involving cultivation of E. coli in airlift bioreactor. This reactor offers advantages over conventional one, such as simplicity of construction, reduced risk of contamination and efficient gas-liquid dispersion with low power consumption. However, the lower O2 transfer in airlift bioreactor (bench scale), compared to that achieved in conventional one, justifies the manipulation of temperature, pressure and flow rates of air and O2 in the dissolved oxygen concentration (DOC) control, avoiding decreases in biomass and recombinant protein productivities. In this context, this study aimed to: (i) determine the influence of internal pressure on the gas holdup (ɛ), volumetric O2 transfer coefficient (kLa) and volumetric O2 transfer rate (continue...). / Devido à ampla caracterização bioquímica, fisiológica e genética e à facilidade de manipulação e de cultivo, diversas proteínas com aplicação industrial e terapêutica são produzidas por Escherichia coli geneticamente modificada. Há informações abundantes na literatura sobre estratégias para aumentar a produção de biomassa e de proteínas recombinantes por meio de cultivos de E. coli empregando biorreator tipo tanque agitado e aerado (convencional). Por outro lado, apesar de bastante empregado em cultivos de microrganismos filamentosos, poucos trabalhos envolvendo cultivo de E. coli em reator pneumático tipo airlift são encontrados. Este biorreator apresenta vantagens frente ao convencional, como simplicidade de construção, menor risco de contaminação e eficiente dispersão gás-líquido com baixo consumo de energia. Entretanto, a menor capacidade de transferência de O2 no biorreator airlift em escala de bancada, em relação à alcançada em reator convencional, justifica a manipulação de variáveis como temperatura, pressão e vazões de ar e O2 no controle adequado da concentração de O2 dissolvido (COD), evitando quedas de produtividade de biomassa e de proteína recombinante. Nesse contexto, este trabalho objetivou: (i) determinar a influência da pressão interna sobre a retenção gasosa (ɛ), o coeficiente volumétrico de transferência de O2 (kLa) e a velocidade volumétrica de transferência de O2 (continua...).
18

Experimental characterization and mondeling of hazards, BLEVE and BOILOVER / Etude expérimentale et modélisation de phénomènes aggravants, BLEVE et BOILOVER

Laboureur, Delphine 22 November 2012 (has links)
The present thesis is conducted in the frame of a research project involving the ‘von Karman Institute (VKI Belgium)’ and the ‘Ecole des mines d’Alès (EMA France) with the support of the CEA Gramat. This project is about theoretical study, experimental characterization and modeling of hazards from pressurized or atmospheric reservoirs, containing liquids, flammable or not. <p><p>The objective of this thesis is to study the apparition criteria and the consequences of an accident involving a container of pressure liquefied gas (BLEVE phenomenon) or liquid fuels (Boilover phenomenon). After a bibliographic research on the two phenomena, an experimental study in laboratory scale is conducted and from the results, the phenomena and their hazards are modeled. Small scale experiments are performed in the BABELs facility (Bleve And Boilover ExperimentaL setup) that consists of a cylindrical chamber of 2m diameter and 3m high, with round shape flanges, made out of steel with a rated pressure of 0.5 MPa. It has 3 series of 7 optical accesses, an entrance door, and an optional air venting system. <p><p>A Boilover is a violent ejection of fuel due to the vaporization of a water sublayer, resulting in an enormous fire enlargement and formation of fireball and ground fire. Small scale experiments with cylindrical reservoirs of 0.08 to 0.3m diameter in glass or metal, filled with a mixture of diesel and oil have been performed. Instrumentation of the measurements consists of thermocouples rake, Medtherm radiometers, load cell and CCD or high-speed camera with a fisheye. During the quasi-steady combustion prior the Boilover, the typical variables describing a pool fire like burning rate, flame size, puffing frequency and radiation can be predicted with semi-empirical correlations available in the literature. At Boilover onset, high speed visualizations in glass reservoir show that the growth of one big bubble leads to a boiling front that propagates radially all along the fuel-water interface, ejecting the upper fuel layer and leading to the increase of flame size. LS-PIV technique applied to high-speed camera images shows that the flame enlargement is directly linked to the velocity of the flame.<p><p>A BLEVE (or Boiling Liquid Expanding Vapour Explosion) is an explosion resulting from the catastrophic failure of a vessel containing a liquid at a temperature significantly above its boiling point at normal atmospheric pressure. Small scale experiments are performed with cylinders of 42g of propane, laid horizontally and heated from below by an electrical resistor. A groove of the reservoirs on the upper part allows better reproducibility of the rupture. High speed visualization and shadowgraphy are helping in visualizing the rupture and the content release. Thermocouples and PCB are also used to measure respectively the temperature and the blast wave overpressure. These experiments show that the fluid behavior during rupture differs with the size of the weakened part and therefore with the rupture pressure. The internal pressure measurement showed that the rupture pressure and temperature are supercritical, leading to the definition of a new type of BLEVE since there is no distinction between liquid and vapor phases prior rupture.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
19

Studie možností využití Teslovy turbíny jako zdroj energie / Study of the possibility of using Tesla's turbine as a source of energy

Šedina, Martin January 2020 (has links)
The master thesis deals with the currently used types of water turbines and next part of the thesis deals with the theory of Tesla turbine. The theoretical part discusses water wheels, water turbines with their types and models which are described in the work. The thesis also discusses the construction of the Tesla turbine, its possibilities of using, inside principles and information about Tesla´s patent. The practical part contains the design of the Tesla turbine with modifications for increasing efficiency. The thesis describes production and assembly of turbine and the technology used for production of the turbine. There is also described how the turbine was measured and there are results of measurements of the turbine.
20

Quantification des gaz générés lors du fonctionnement d'une batterie Li-ion : effet des conditions opératoires et rôle de l'électrolyte / Quantification of gas generation during cycling of Li-ion batteries : effect of operating conditions and function of electrolyte

Xiong, Bao Kou 15 February 2018 (has links)
Le fonctionnement des batteries lithium-ion, qu’il soit normal ou dans des conditions abusives, est accompagné d’une génération de gaz en particulier lors des premiers cycles. Celle-ci est intrinsèque au dispositif et est soumise à de nombreux paramètres tels que les matériaux d’électrodes utilisés, l’électrolyte ou encore les conditions opératoires. Cette génération de gaz est délétère : elle conduit à l’augmentation de la pression interne des batteries et pose donc des problèmes de sécurité. Cette étude vise à quantifier les volumes de gaz générés et à comprendre les mécanismes liés à la surpression dans les batteries. A cet effet, le format de batterie « pouch cell » a été adopté tout au long de ce travail de thèse. L’électrolyte choisi est le mélange EC:PC:3DMC + 1 mol.L-1 LiPF6. La première partie de ce travail est dédiée à la mise au point d’un protocole expérimental basé sur (i) l’analyse des matériaux d’électrodes (NMC, LFP, Gr, et LTO), (ii) la solubilité de gaz (O2, H2) comparées à (CO2, CH4) par PVT, et (iii) la quantification des volumes de gaz générés durant le cyclage en pouch cell, corrélée aux performances électrochimiques. Une analyse préalable en demi-piles et en dispositifs complets Gr//NMC et LTO//LFP a également été réalisée afin d’anticiper les performances attendues en pouch cells. Une analyse critique des données (de la littérature et de nos mesures) a permis de définir une procédure optimisée pour obtenir des résultats reproductibles et comparables lors des mesures de volume en pouch cells. La seconde partie de cette thèse consiste en la quantification du volume de gaz produit au cours du cyclage des pouch cells Gr//NMC, Gr//LFP, LTO//LFP et LTO//NMC. Ainsi, les tensions de fin de charge, l’effet du sel et de la température ont été discutés pour dégager les paramètres déterminants dans la génération de gaz en particulier lors de la formation de la SEI. Enfin, une analyse de la composition du gaz récupéré a été effectué par GC-MS et FTIR. A partir de résultats obtenus, des mécanismes ont été proposés et discutés. / The functioning of lithium-ion batteries, may it be under normal use or under abusive conditions, is accompanied by gas generation, especially during the first cycles. This extent of gas generation is dependent on the choice of electrode materials, the electrolyte, and the operating conditions. This gas generation is detrimental: the build-up of pressure leads to the over-pressure in the battery, raising serious concerns. This study is aimed at understanding the fundamental mechanisms governing these reactions. To do so, the « pouch cell » configuration was adopted throughout this thesis. The electrolyte we worked on is the mixture EC:PC:3DMC + 1 mol.L-1 LiPF6. The first chapter of this work is dedicated to development of an experimental protocol based on (i) the analysis of the electrodes materials (NMC, LFP, Gr and LTO), (ii) the gas solubilities (O2, H2) compared to (CO2, CH4) by PVT method, and (iii) the quantification of the volume of generated gases during the cycling of pouch cells which was correlated to the electrochemical performances. A preliminary analysis of half-cells and full cells Gr//NMC and LTO//LFP were also conducted to foresee the performances of the pouch cells. A critical analysis of data taken from the literature and from our own experiments enabled the optimization of a proper procedure to get reproducible and comparable results. The second part of this thesis consists in the quantification of the volume of gases generated during the cycling of Gr//NMC, Gr//LFP, LTO//LFP and LTO//NMC pouch cells. In that respect, the voltages of the end of charge and the effect of salt and of temperature were discussed to figure out the essential parameters in the gas generation and in particular during the formation of SEI. Lastly, a compositional analysis of gases was performed using GC-MS and FTIR. Based on those results, a mechanism is proposed and discussed herein.

Page generated in 0.0703 seconds