Spelling suggestions: "subject:"exygen ensing"" "subject:"exygen densing""
1 |
The Morphological and Molecular Basis of Hypoxic Chemotransduction and Transmission in Neuroepithelial Cells of Zebrafish (Danio rerio)Pan, Wen 13 September 2021 (has links)
O2 is essential to many animals. Vertebrate species rely on specialized chemoreceptive cells to “sense” O2 changes in order to make appropriate physiological adjustments to maintain homeostasis. Aquatic vertebrates are especially prone to fluctuations in environmental O2 availability and have adapted respiratory and cardiovascular responses to cope with hypoxia, a condition characterized by a low level of O2. In teleost fish, such as zebrafish (Danio rerio), neuroepithelial cells (NECs) present in the gill epithelium are the putative O2 chemoreceptors that mediate hypoxic signals to facilitate such responses. NECs contain the neurotransmitter serotonin (5-HT) and exhibit extensive neural innervation. They are sensitive to hypoxia, as isolated NECs undergo membrane depolarization and vesicular recycling when exposed to acute hypoxia. Other neurotransmitters, such as dopamine (DA), acetylcholine (ACh) and adenosine triphosphate (ATP), have also been suggested to regulate the ventilatory responses to hypoxia. However, the presence of these neurotransmitters or targeted receptors in gills are not well explored. In my PhD studies, I identified cellular and molecular components involved in chemotransduction and transmission for hypoxic signals in NECs of zebrafish through various experimental approaches. First, using the existing transgenic zebrafish line, ETvmat2:GFP, I established a method to reliably identify gill NECs. I showed that these cells could be distinguished based on their high expressions of the reporter gene GFP in vitro, in situ and in cytometric analyses. GFP-labeled NECs also displayed increases in cell size and population in response to chronic hypoxia. Second, using immunohistochemistry and confocal microscopy, I localized cholinergic cells and dopaminergic cells, sources of DA and ACh secretion respectively, in the gills. These cells present distinct populations from serotonergic NECs. In addition, I found purinergic P2X3 receptors, targets of ATP, to be present in gill NECs and other iv neurons. These findings offered different avenues in which hypoxic signals could be regulated. Lastly, using the single cell RNA sequencing approach, I determined the transcriptomic profile of NECs. NECs showed high expressions of G protein regulators, similar to those found in the mammalian O2 chemoreceptors, and they expressed high levels of genes likely to be involved in O2 signal transduction and transmission. Within the gill cell atlas generated using the single cell sequencing data, I localized a number of 5-HT, ACh and DA receptors in various gill cell populations, providing evidence for the 5-HT fast synaptic excitatory neurotransmission, paracrine and endocrine regulation of the signal. The studies overall provide compelling evidence to support a role for NECs as the primary O2 chemoreceptor in zebrafish, and further our understanding of signal modulation in the hypoxic response.
|
2 |
Selective Inhibition Studies of Factor Inhibiting Hif (fih)Holmes, Breanne E 01 January 2011 (has links) (PDF)
The control of oxygen delivery to cells in the body is the result of a small group of primary oxygen sensors, one of the most important of which is the hypoxia-inducible transcription factor-1 (HIF-1). Two alpha-ketoglutarate dependent non-heme iron dioxygenases are responsible for the regulation of HIF-1 through hydroxylation of residues on the HIF-1a subunit. One of these enzymes, known as the factor inhibiting HIF-1 (FIH-1) is responsible for hydroxylating residue Asn803 on HIF-1a, preventing the transcription of hypoxia related genes controlled by HIF-1. It was hypothesized that there would be a difference in inhibition of FIH-1 from the other HIF-1 regulating enzyme, the prolyl hydroxylase domain-2 (PHD2), when testing a series of ten small molecule inhibitors. The ten inhibitors chosen fell into three classes: pyrones, pyridines, and catechols. Of these inhibitors, it was found that catechols produced a significant inhibitory difference between PHD2 and FIH, and may provide useful in further inhibitor design and synthesis work.
|
3 |
Oxygen Sensing, Hypoxia Inducible Factor 1 (HIF-1) Expression, and Hypoxia-Induced Angiogenesis in the Aged Rat BrainNdubuizu, Obinna I. January 2011 (has links)
No description available.
|
4 |
Development of a Microfluidic Platform to Investigate Effect of Dissolved Gases on Small Blood Vessel FunctionKraus, Oren 20 November 2012 (has links)
In this thesis I present a microfluidic platform developed to control dissolved gases and monitor dissolved oxygen concentrations within the microenvironment of isolated small blood vessels. Dissolved gas concentrations are controlled via permeation through the device substrate material using a 3D network of gas and liquid channels. Dissolved oxygen concentrations are measured on-chip via fluorescence quenching of an oxygen sensitive probe embedded in the device. Dissolved oxygen control was validated using the on-chip sensors as well as a 3D computational model. The platform was used in a series of preliminary experiments using olfactory resistance arteries from the mouse cerebral vascular bed. The presented platform provides the unique opportunity to control dissolved oxygen concentrations at high temporal resolutions (<1 min) and monitor dissolved oxygen concentrations in the microenvironment surrounding isolated blood vessels.
|
5 |
Characterisation of 2-oxoglutarate- and fe(II)-dependent oxygenases targeting the protein synthesis apparatusFeng, Tianshu January 2014 (has links)
Members of the 2-oxoglutarate (2OG)- and Fe(II)-dependent oxygenase (2OG oxygenase) superfamily catalyse a wide range of oxidative reactions in biology. 2OG oxygenases require Fe(II) and atmospheric oxygen for their activity, and couple substrate oxidation with the decarboxylation of 2OG into succinate and carbon dioxide. There are more than sixty known 2OG oxygenases in the human genome; they modify small molecules, nucleic acids and proteins implicated in diverse biological processes. Importantly, the seemingly disparate functions of 2OG oxygenases often converge to regulate gene expression. 2OG oxygenases have been shown to affect epigenetic reprogramming, chromatin remodelling, transcription factor activity and mRNA splicing. Emerging evidence indicates that 2OG oxygenases are also involved in the translational control of gene expression. Oxygenases TYW5, ALKBH8, ALKBH5 and FTO were found to catalyse modifications of tRNA and mRNA. The work in this thesis extends these observations by demonstrating that 2OG oxygenase-catalysed protein hydroxylations also play an important role in protein synthesis. The catalytic activities of two oxygenases belonging to the JmjC-only family, NO66 and JMJD4, are described. NO66 catalyses the histidinyl hydroxylation of 60S ribosomal subunit protein L8. NO66 is part of a conserved group of ribosomal protein hydroxylases that can be traced back to prokaryotes. JMJD4 is a lysyl hydroxylase of eRF1, the eukaryotic release factor responsible for translation termination. The hydroxylation of eRF1 takes place on a conserved NIKS motif important for release factor activity, and promotes effcient translational termination. JMJD4 is further implicated in cell growth and cancer, though the link between its activity and tumourigenesis remains to be determined. These results highlight the potential of 2OG oxygenases as regulators of protein synthesis, and further extend the scope of 2OG oxygenase function. The small molecule inhibition of 2OG oxygenases presents a novel therapeutic possibility targeting translational control in cancer and other diseases.
|
6 |
Regulatory crosstalk and interference between the PCB 126 stimulated AHR and hypoxia stimulated HIF-1α signaling pathwaysVorrink, Sabine Ulrike 01 May 2014 (has links)
Polychlorinated biphenyls (PCBs) are synthetic organic chemicals that persist in the environment and are known to be carcinogenic to humans. Virtually all of the deleterious effects of PCB 126, the most potent dioxin-like PCB, are mediated by the aryl hydrocarbon receptor (AhR). By means of the common cofactor ARNT, the AhR signaling pathway can crosstalk with the hypoxia signaling pathway. Regulated by hypoxia-inducible factors (HIFs), the hypoxia pathway mediates responses to environments of reduced oxygen availability (hypoxia). This dissertation specifically examines the crosstalk and interference between these two pathways in the context of PCB 126 exposure. The results of this dissertation show that the antagonistic relationship between the AhR and hypoxia signaling pathways affects the function and responses of both AhR and HIF-1Α. We provide substantial evidence that ARNT is indeed a crucial factor in both the AhR and HIF-1Α signaling pathways. Furthermore, this dissertation examines regulatory mechanisms involved in AhR-mediated gene expression and identifies epigenetic regulation as a critical factor in AhR target gene expression. In summary, this dissertation helped to improve the understanding of mechanisms of PCB 126 toxicity. Understanding the detrimental biological effects of these ubiquitous environmental pollutants might ultimately have significant implications for human health.
|
7 |
Oxygen Sensitivity of Skin Neuroepithelial Cells in Developing Zebrafish, Danio rerioCoccimiglio, Maria Louise 16 November 2011 (has links)
In zebrafish, the ventilatory response to hypoxia first develops at 3 days post-fertilization (d.p.f.) before O2-chemoreceptive neuroepithelial cells (NECs) of the gill appear at 7 d.p.f. This indicates the presence of extrabranchial chemoreceptors in embryos and a developmental transition to primarily gill O2 sensing. This thesis examined the skin NECs, which reach peak density in embryos but decline as gill NECs appear. Exposure of embryos and larvae to chronic hypoxia prevented the loss of skin NECs, shifted peak basal ventilation to a later developmental stage, and induced a hypoventilatory response to acute hypoxia. Chronic exposure to hyperoxia rapidly diminished skin NECs, shifted peak ventilation to earlier stages and eliminated the response to acute hypoxia. Administration of the neurotoxin 6-hydroxydopamine degraded nerve terminals that contact skin NECs and reduced both basal ventilation frequency and the hypoxic ventilatory response. Thus, skin NECs are candidates for extrabranchial O2 chemoreceptors in developing zebrafish.
|
8 |
Oxygen Sensitivity of Skin Neuroepithelial Cells in Developing Zebrafish, Danio rerioCoccimiglio, Maria Louise 16 November 2011 (has links)
In zebrafish, the ventilatory response to hypoxia first develops at 3 days post-fertilization (d.p.f.) before O2-chemoreceptive neuroepithelial cells (NECs) of the gill appear at 7 d.p.f. This indicates the presence of extrabranchial chemoreceptors in embryos and a developmental transition to primarily gill O2 sensing. This thesis examined the skin NECs, which reach peak density in embryos but decline as gill NECs appear. Exposure of embryos and larvae to chronic hypoxia prevented the loss of skin NECs, shifted peak basal ventilation to a later developmental stage, and induced a hypoventilatory response to acute hypoxia. Chronic exposure to hyperoxia rapidly diminished skin NECs, shifted peak ventilation to earlier stages and eliminated the response to acute hypoxia. Administration of the neurotoxin 6-hydroxydopamine degraded nerve terminals that contact skin NECs and reduced both basal ventilation frequency and the hypoxic ventilatory response. Thus, skin NECs are candidates for extrabranchial O2 chemoreceptors in developing zebrafish.
|
9 |
High-resolution measurement of dissolved oxygen concentration in vivo using two-photon microscopyEstrada, Arnold Delfino 14 June 2011 (has links)
Because oxygen is vital to the metabolic processes of all eukaryotic cells, a detailed understanding of its transport and consumption is of great interest to researchers. Existing methods of quantifying oxygen delivery and consumption are non-ideal for in vivo measurements. They either lack the three-dimensional spatial resolution needed, are invasive and disturb the local physiology, or they rely on hemoglobin spectroscopy, which is not a direct measure of the oxygen available to cells. Consequently, many fundamental physiology research questions remain unanswered. This dissertation presents our development of a novel in vivo oxygen measurement technique that seeks to address the shortcomings of existing methods. Specifically, we have combined two-photon microscopy with phosphorescence quenching oximetry to produce a system that is capable of performing depth-resolved, high-resolution dissolved oxygen concentration (PO2) measurements. Furthermore, the new technique allows for simultaneous visualization of the micro-vasculature and measurement of blood velocity. We demonstrate the technique by quantifying PO2 in rodent cortical vasculature under normal and pathophysiologic conditions. We also demonstrate the technique’s usefulness in examining the changes in oxygen transport that result from acute focal ischemia in rodent animal models. / text
|
10 |
Oxygen Sensitivity of Skin Neuroepithelial Cells in Developing Zebrafish, Danio rerioCoccimiglio, Maria Louise 16 November 2011 (has links)
In zebrafish, the ventilatory response to hypoxia first develops at 3 days post-fertilization (d.p.f.) before O2-chemoreceptive neuroepithelial cells (NECs) of the gill appear at 7 d.p.f. This indicates the presence of extrabranchial chemoreceptors in embryos and a developmental transition to primarily gill O2 sensing. This thesis examined the skin NECs, which reach peak density in embryos but decline as gill NECs appear. Exposure of embryos and larvae to chronic hypoxia prevented the loss of skin NECs, shifted peak basal ventilation to a later developmental stage, and induced a hypoventilatory response to acute hypoxia. Chronic exposure to hyperoxia rapidly diminished skin NECs, shifted peak ventilation to earlier stages and eliminated the response to acute hypoxia. Administration of the neurotoxin 6-hydroxydopamine degraded nerve terminals that contact skin NECs and reduced both basal ventilation frequency and the hypoxic ventilatory response. Thus, skin NECs are candidates for extrabranchial O2 chemoreceptors in developing zebrafish.
|
Page generated in 0.0562 seconds