• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 261
  • 126
  • 61
  • 29
  • 26
  • 19
  • 16
  • 12
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1209
  • 234
  • 181
  • 181
  • 142
  • 124
  • 105
  • 98
  • 92
  • 91
  • 90
  • 73
  • 73
  • 71
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

The influence of soil and contaminant properties on the efficiency of physical and chemical soil remediation methods

Jonsson, Sofia January 2009 (has links)
A vast number of sites that have been contaminated by industrial activities have been identified worldwide. Many such sites now pose serious risks to humans and the environment. Given the large number of contaminated sites there is a great need for efficient, cost-effective  remediation methods. Extensive research has therefore been focused on the development of such methods. However, the remediation of old industrial sites is challenging, for several reasons. One major  problem is that organic contaminants become increasingly strongly sequestered as they persist in the soil matrix for a long period of time. This process is often referred to as ‘aging’, and leads to decreasing availability of the contaminants, which also affects the remediation efficiency. In the work underlying this thesis, the influence of soil and contaminant properties on the efficiency of various physical and chemical soil remediation methods was investigated. The investigated contaminants were polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Briefly, the results show that as the size of soil particles decreases the contaminants become more strongly sorbed to the soil’s matrix, probably due to the accompanying increases in specific surface area. This affected the efficiency of the removal of organic pollutants by both a process based on solvent washing and processes based on chemical oxidation. The sorption strength is also affected by the hydrophobicity of the contaminants. However, for a number of the investigated PAHs their chemical reactivity was found to be of greater importance for the degradation efficiency. Further, the organic content of a soil is often regarded as the most important soil parameter for adsorption of hydrophobic compounds. In these studies the effect of this parameter was found to be particularly pronounced for the oxidation of low molecular weight PAHs, but larger PAHs were strongly adsorbed even at low levels of organic matter. However, for these PAHs the degradation efficiency was positively correlated to the amount of degraded organic matter, probably due to the organic matter being oxidized to smaller and less hydrophobic forms. The amount of organic matter in the soil had little effect on the removal efficiency obtained by the solvent-washing process. However, it had strong influence on the performance of a subsequent, granular activated carbon-based post-treatment of the washing liquid. In conclusion, the results in this thesis show that remediation of contaminated soils is a complex process, the efficiency of which will be affected by the soil matrix as well as the properties of the contaminants present at the site. However, by acquiring thorough knowledge of the parameters affecting the treatability of a soil it is possible to select appropriate remediation methods, and optimize them in terms of both remediation efficiency and costs for site- and contaminant-specific applications.
642

Treatment Of Xenobiotics During Anaerobic Digestion And Its Enhancement Upon Post-ozonation Of The Anaerobically Treated Sludge

Ak, Munire Selcen 01 September 2012 (has links) (PDF)
Treatment of waste sludge has become an important issue in recent years around the world. However, the trend of waste sludge treatment has shifted from volume minimization and stabilization to reuse of the sludge and recover the energy potential of it. Therefore, anaerobic treatment of sludge is gaining popularity because of byproduct methane production and high percentage of VSS reduction. Pre-treatment of sludge before anaerobic digestion in order to increase methane production, and ozone pre-treatment in this context, is one such option. Domestic sludge also contains the recently recognized, so called, emerging compounds such as Endocrine Disrupting Compounds (EDCs). Therefore treatment of EDCs in sludge is another challenge in waste sludge treatment since direct discharge of such chemicals may harm the environment by causing gender shifts within the fauna. In this context two hormones (estrone and progesterone), three pharmaceuticals (acetaminophen, carbamazepine and diltiazem) and one plasticizer (benzyl-butyl phthalate) were routinely analyzed in sludge samples which were subjected to treatment during this study. Treatment of EDCs during anaerobic digestion and the effect of ozonation both on the performance of digestion and the treatability of EDCs were investigated in this study. Four 2.5L anaerobic jars were used for anaerobic digestion connected to four 1L plastic graduated cylinders immersed in salt-water to collect the off gas. Anaerobic sludge culture of the reactor and the sludge feed to the reactors were obtained from Ankara Tatlar Wastewater Treatment Plant anaerobic digester and return activated sludge (RAS) line, respectively. One of the anaerobic digesters was used as control (no ozonation) and the others were fed with sludge samples ozonated at three different ozone doses 0.65, 1.33 and 2.65 mg ozone/g biomass. Sludge ages of the reactors were initially set to 25 days and the reactors were fed once every 2 days. The TSS, VSS, total gas volume, COD, pH, CH4 percentage and EDCs were analyzed routinely. In the reactors, operated at 25 days, because of the observation of reduction of TSS, SRT was set to infinity / thus, sludge wastage was terminated. Following the startup it was seen that at 2.65 mg ozone/g biomass dose TSS and VSS did not stay constant in the reactor and dropped sharply in the course of operation, indicating that system was not steady at this SRT. However, upon stoppage of sludge wastage from the reactors, thereby setting SRT to infinity, a steady culture could be maintained in the reactors. Both total gas production and CH4 percentage increased with the increasing doses of ozone with respect to control reactor. For 2.65 mg/g ozonated reactor total gas volume doubled the amount produced in the control reactor. All the EDCs within the scope of this study were analyzed in sludge using ultrasound-aided sequential sludge extraction method twice a week and the results showed that ozonation affected treatment of EDCs for up to 96%. The highest removal rate was obtained with natural hormones. Rates of treatment of pharmaceuticals were the second best.
643

Treatment Of Xenobiotics During Anaerobic Digestion And Its Enhancement Upon Post-ozonation Of The Anaerobically Treated Sludge

Ak, Munire Selcen 01 September 2012 (has links) (PDF)
Treatment of waste sludge has become an important issue in recent years around the world. However, the trend of waste sludge treatment has shifted from volume minimization and stabilization to reuse of the sludge and recover the energy potential of it. Therefore, anaerobic treatment of sludge is gaining popularity because of byproduct methane production and high percentage of VSS reduction. Pre-treatment of sludge before anaerobic digestion in order to increase methane production, and ozone pre-treatment in this context, is one such option. Domestic sludge also contains the recently recognized, so called, emerging compounds such as Endocrine Disrupting Compounds (EDCs). Therefore treatment of EDCs in sludge is another challenge in waste sludge treatment since direct discharge of such chemicals may harm the environment by causing gender shifts within the fauna. In this context two hormones (estrone and progesterone), three pharmaceuticals (acetaminophen, carbamazepine and diltiazem) and one plasticizer (benzyl-butyl phthalate) were routinely analyzed in sludge samples which were subjected to treatment during this study. Treatment of EDCs during anaerobic digestion and the effect of ozonation both on the performance of digestion and the treatability of EDCs were investigated in this study. Four 2.5L anaerobic jars were used for anaerobic digestion connected to four 1L plastic graduated cylinders immersed in salt-water to collect the off gas. Anaerobic sludge culture of the reactor and the sludge feed to the reactors were obtained from Ankara Tatlar Wastewater Treatment Plant anaerobic digester and return activated sludge (RAS) line, respectively. One of the anaerobic digesters was used as control (no ozonation) and the others were fed with sludge samples ozonated at three different ozone doses 0.65, 1.33 and 2.65 mg ozone/g biomass. Sludge ages of the reactors were initially set to 25 days and the reactors were fed once every 2 days. The TSS, VSS, total gas volume, COD, pH, CH4 percentage and EDCs were analyzed routinely. In the reactors, operated at 25 days, because of the observation of reduction of TSS, SRT was set to infinity / thus, sludge wastage was terminated. Following the startup it was seen that at 2.65 mg ozone/g biomass dose TSS and VSS did not stay constant in the reactor and dropped sharply in the course of operation, indicating that system was not steady at this SRT. However, upon stoppage of sludge wastage from the reactors, thereby setting SRT to infinity, a steady culture could be maintained in the reactors. Both total gas production and CH4 percentage increased with the increasing doses of ozone with respect to control reactor. For 2.65 mg/g ozonated reactor total gas volume doubled the amount produced in the control reactor. All the EDCs within the scope of this study were analyzed in sludge using ultrasound-aided sequential sludge extraction method twice a week and the results showed that ozonation affected treatment of EDCs for up to 96%. The highest removal rate was obtained with natural hormones. Rates of treatment of pharmaceuticals were the second best.
644

Source- and Age-Resolved Mechanistic Air Quality Models: Model Development and Application in Southeast Texas

Zhang, Hongliang 2012 May 1900 (has links)
Ozone (O3) and particulate matter (PM) existing in the atmosphere have adverse effects to human and environment. Southeast Texas experiences high O3 and PM events due to special meteorological conditions and high emission rates of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Quantitative knowledge of the contributions of different emissions sources to O3 and PM is helpful to better understand their formation mechanisms and develop effective control strategies. Tagged reactive tracer techniques are developed and coupled into two chemical transport models (UCD/CIT model and CMAQ) to conduct source apportionment of O3, primary PM, secondary inorganic PM, and secondary organic aerosol (SOA) and aging distribution of elemental carbon (EC) and organic carbon (OC). Ozone (O3) and particulate matter (PM) existing in the atmosphere have adverse effects to human and environment. Southeast Texas experiences high O3 and PM events due to special meteorological conditions and high emission rates of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Quantitative knowledge of the contributions of different emissions sources to O3 and PM is helpful to better understand their formation mechanisms and develop effective control strategies. Tagged reactive tracer techniques are developed and coupled into two chemical transport models (UCD/CIT model and CMAQ) to conduct source apportionment of O3, primary PM, secondary inorganic PM, and secondary organic aerosol (SOA) and aging distribution of elemental carbon (EC) and organic carbon (OC). Models successfully reproduce the concentrations of gas phase and PM phase species. Vehicles, natural gas, industries, and coal combustion are important O3 sources. Upwind sources have non-negligible influences (20-50%) on daytime O3, indicating that regional NOx emission controls are necessary to reduce O3 in Southeast Texas. EC is mainly from diesel engines while majority of primary OC is from internal combustion engines and industrial sources. Open burning, road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates primary PM near fire locations. Over 80% of sulfate is produced in upwind areas and coal combustion contributes most. Ammonium ion is mainly from agriculture sources. The SOA peak values can be better predicted when the emissions are adjusted by a factor of 2. 20% of the total SOA is due to anthropogenic sources. Solvent and gasoline engines are the major sources. Oligomers from biogenic SOA account for 30-58% of the total SOA, indicating that long range transport is important. PAHs from anthropogenic sources can produce 4% of total anthropogenic SOA. Wild fire, vehicles, solvent and industries are the major sources. EC and OC emitted within 0-3 hours contribute approximately 70-90% in urban Houston and about 20-40% in rural areas. Significant diurnal variations in the relative contributions to EC are predicted. Fresh particles concentrations are high at morning and early evening. The concentrations of EC and OC that spend more than 9 hours in the air are low over land but almost accounts for 100% of the total EC and OC over the ocean.
645

Airway antioxidant responses to oxidative air pollution and vitamin supplementation

Behndig, Annelie January 2006 (has links)
Air pollutants, such as ozone (O3) and diesel exhaust particles, elicit oxidative stress in the lung. Antioxidants within the respiratory tract lining fluid (RTLF) protect the underlying tissue from oxidative injury. Supplementation with vitamins has been shown to modulate the acute ozone-induced effects, but the mechanisms behind this have not been fully clarified. The aim of this thesis was to investigate the airway responses to diesel exhaust and ozone exposure in healthy humans, with the emphasis on inflammatory and antioxidant responses. Furthermore, to study whether oral supplementation with vitamin C could increase ascorbate concentration in the RTLF and whether vitamin supplementation could modulate the negative effects induced by ozone exposure. Diesel exhaust (100 µg/m3 PM10 for 2h), evaluated 18 hours post exposure (PE), induced a neutrophilic airway inflammation and an increase in bronchoalveolar (BAL) urate and reduced glutathione. During O3 exposure (0.2 ppm for 2h), significant losses of nasal RTLF urate and ascorbate concentrations were observed. Six hours PE, a neutrophilic inflammation was evident in the bronchial wash (BW), together with enhanced concentrations of urate and total glutathione. In the bronchoalveolar lavage (BAL), where vitamin C, urate and glutathione concentrations were augmented, no inflammatory response was seen. In alveolar lavage leukocytes, there was a significant loss of glutathione and cysteine, whereas an increase in ascorbate was found in bronchial tissue samples. Following supplementation with increasing doses of vitamin C (60-1,000 mg/day, for 14 days), evaluated 24 hours after the last dose, ascorbate concentrations were unchanged in the nasal RTLF, despite elevated concentrations in plasma and urine. In contrast, following a single dose of 1g of vitamin C, vitamin C concentrations increased significantly in both plasma and nasal lavage two hours post supplementation, before returning to baseline levels at 24 hours. Notably, dehydroascorbate (DHA) accounted for the largest part of RTLF vitamin C and a number of control experiments were performed to ensure the authenticity of this finding. Healthy O3 responders were exposed to O3 (0.2 ppm for 2 h) and air, following seven days of supplementation with vitamin C and E or placebo. No protective effect on lung function or airway inflammation was observed following supplementation. BW and BAL-DHA were enhanced after O3, with further increases following supplementation. In conclusion, oxidative air pollutants induce airway inflammation, as well as a broad spectrum of antioxidant adaptations, which could ultimately limit the airway inflammatory responses. Oral vitamin supplementation was shown to augment RTLF-vitamin C concentrations, but it did not provide protection from the ozone-induced airway responses following a single insult of ozone. The finding of high concentrations of DHA in the RTLF could indicate that DHA represents an important transport form of vitamin C onto the surface of the lung.
646

Photochemical Degradation of Chlorobenzene

Sycz, Mateusz 30 April 2013 (has links)
Persistent organic pollutants (POPs) are organic compounds of anthropogenic origin that have been linked to the development of cancer, neurobehavioural impairment, and immune system biochemical alterations. These chemicals have various industrial applications as well as acting as pesticides. Dioxins and furans are some of these compounds that are unintentionally produced in combustion and industrial processes. By definition these compounds have 4 common qualities: they are highly toxic, they are resistant to environmental degradation, they are introduced into the air and water where they travel long distances, and they accumulate in fatty tissues. Photochemical degradation is a method that has been extensively researched in the last few decades. In the aqueous phase it has already been shown to be able to degrade a number of refractory organics, such as dioxins and furans. The ultimate products of this process tend to be carbon dioxide, water, and mineral anions. Air phase work has been also gaining attention in recent decades as a possible alternative to incineration methods in air pollution control. The advantages of photochemical degradation processes are that they can be initiated at low temperatures, are relatively low cost compared to incineration processes, environmentally benign, and have the potential for quick and complete degradation of organic compounds. The main aim of the research is to investigate the photochemical degradation potential of PCDD/ PCDFs in gaseous air streams as a potential air pollution control technology. In order to do this, the photodegradation reaction kinetics were determined for chlorobenzene as a suitable surrogate for PCDD/PCDFs. Three different photodegradation schemes were employed: direct photolysis, UV/O3, and UV/H2O2. In addition, ozonolysis reaction rates were also determined to evaluate the effects of on the overall photodegradation rates for the UV/O3 process. Factors such as humidity levels and temperature were investigated to determine their effects on degradation rates. Temperature and humidity were not greatly influential on the degradation rates of direct photolysis. The degradation rate of chlorobenzene at a temperature of 100°C and high humidity was noticeably reduced, but unchanged at the 10% RH and 60% RH levels for all temperatures. Ozonolysis of chlorobenzene was negligible at 30°C for all humidity levels. Ozonolysis reactions at the 60°C and 100°C levels were higher than direct photolysis rates and in the 100°C case exceeded the UV/O3 degradation rates. Ozone coupled with UV experiments proved to be the most destructive at the low temperature of 30°C and molar ratio of 10:1 ozone to chlorobenzene. There was a clear and positive relationship between the amount of ozone present in the reactor and the degradation rate. At lower ozone to chlorobenzene molar ratios the degradation rates were not much higher than those for direct photolysis of ozone. The 5:1 molar ratio saw a significant increase in degradation rates over the photolysis rates. The fastest degradation rate was achieved for the 10:1 molar ratio and high humidity, which was over 10 times the rate of direct photolysis. In addition, humidity had a noticeably significant positive effect in these reactions. The effect of temperature on the UV/ozone reaction scheme was determined for the 5:1 ozone to chlorobenzene ratio. Temperature had an interesting effect on the degradation rates at higher temperatures. As the reactor temperature increased, the degradation rates from ozonolysis and UV/O3 began to converge at 60°C, ultimately leading to the ozonolysis reaction being faster than the UV/O3. Exploratory experiments for the H2O2 scheme were performed. H2O2 had a positive influence on the degradation rate of chlorobenzene and was about 26% higher than the direct photolysis rates. However for similar conditions, the UV/O3 process had higher degradation rates as was expected from the difference in absorption values between ozone and hydrogen peroxide.
647

Application of heterogeneous catalysts in ozonation of model compounds in water

Guzman Perez, Carlos Alberto 18 January 2011
The presence of micropollutants, particularly pesticides, in surface waters across Canada has been of concern not only for their environmental impact, but also for their potential effects on human health and recalcitrant nature to conventional water treatment methods. Although ozone has been mainly applied for disinfection of drinking water, oxidation of trace organics by ozonation has been considered potentially effective. In an effort to meet increasingly stringent drinking water regulations, different solid catalysts have been used to enhance the removal of water contaminants by ozonation. In spite of the increasing number of data demonstrating the effectiveness of heterogeneous catalytic ozonation, the influence of different factors on the efficiency of micropollutants oxidation is still unclear.<p> In the present work, application of three solid catalysts in ozonation of two model micropollutants in pure water was examined using a laboratory-scale reaction system over a range of operating conditions. The three catalysts investigated were activated carbon, alumina, and perfluorooctyl alumina, and the two model micropollutants were the pesticides atrazine and 2,4-dichlorophenoxyactic acid. The effects of solution pH, presence of a radical scavenger, pesticide adsorption on catalyst, and catalyst dose on micropollutant removal were investigated. Solution pH was found to significantly influence the catalyst ability to decompose ozone into free hydroxyl radicals. The effect of these free radicals was markedly inhibited by the radical scavenger resulting in a negative impact on pesticides degradation. In general, the removal rate of pesticides was found to increase with increasing doses of catalyst.<p> In the ozonation process in the presence of activated carbon, atrazine removal rates increased four and two times when using a catalyst dose of 0.5 g L-1 at pH 3 and 7, respectively, whereas observed reaction rates for 2,4-D increased over 5 times in the presence of 1 × 10-4 M tert-butyl alcohol at pH 3. In the ozonation system catalyzed by 8 g L-1 alumina, the observed reaction rate constant of atrazine removal notably improved at neutral pH by doubling the micropollutant removal rate. For the pesticide 2,4-D in the presence of 1 × 10-4 M tert-butyl alcohol at pH 5, the observed removal rate was over ten times higher than that for the non-catalytic ozonation process using also using a catalyst dose of 8 g L-1. Modification of alumina to produce perfluorooctyl alumina resulted in a material able to significantly adsorb atrazine, while not exhibiting affinity for adsorption of 2,4-D. In spite of its adsorptive properties, perfluorooctyl alumina was found to enhance neither molecular ozone reactions nor ozone decomposition into hydroxyl radicals. Thus, the observed removal rates for atrazine and 2,4-D by ozonation in the presence of perfluorooctyl alumina did not increase significantly.
648

The Influence of Synoptic Weather Conditions on Weekday-weekend Effect of Extreme Ground-level Ozone Events in the Toronto area

Leung, Kinson He Yin 10 January 2011 (has links)
Ground-level ozone (O3) is a familiar pollutant because it is associated with summer haze and smog alerts. The 2000-2008 weekday-weekend variations of ozone concentration were examined in relation to the Toronto weather conditions. The goal of this work is twofold: (1) To determine whether extreme ozone events were associated with specific weather conditions, (2) To determine whether the weekday-weekend effect of extreme ozone events could be detectable during the nine-year study period. The results show that in the study period, there were totally 313 days having extreme ground-level ozone events with ozone concentration ≥ 80 ppb, which is the current Ontario Ambient Air Quality Criterion for ozone concentration, in the four selected Toronto sites. Additionally, the weather condition mainly associated with these 313 days was the Dry Tropical one. This study also shows the phenomenon of the weekday-weekend effect of extreme ozone events in the past nine years in Toronto.
649

The Influence of Synoptic Weather Conditions on Weekday-weekend Effect of Extreme Ground-level Ozone Events in the Toronto area

Leung, Kinson He Yin 10 January 2011 (has links)
Ground-level ozone (O3) is a familiar pollutant because it is associated with summer haze and smog alerts. The 2000-2008 weekday-weekend variations of ozone concentration were examined in relation to the Toronto weather conditions. The goal of this work is twofold: (1) To determine whether extreme ozone events were associated with specific weather conditions, (2) To determine whether the weekday-weekend effect of extreme ozone events could be detectable during the nine-year study period. The results show that in the study period, there were totally 313 days having extreme ground-level ozone events with ozone concentration ≥ 80 ppb, which is the current Ontario Ambient Air Quality Criterion for ozone concentration, in the four selected Toronto sites. Additionally, the weather condition mainly associated with these 313 days was the Dry Tropical one. This study also shows the phenomenon of the weekday-weekend effect of extreme ozone events in the past nine years in Toronto.
650

Application Of Active Sampling And Sptd/gc-ms Analysis Methodologies For Terpenes At Uludag Mountain

Aktas, Yusuf 01 September 2003 (has links) (PDF)
Measurement of monoterpenes including / alpha-pinene, camphene, beta-pinene, d-limonene, gamma-terpinene, linalool, 1-isopulegol, 1-borneol, dl-menthol, alpha-terpineol, dihydrocarveol, citronellol, pulegone, geraniol / and gas phase inorganic pollutants (O3 and NOx) were investigated on Uludag Mountain, which is the highest point in North-west Turkey. The sampling site (1645 m altitude) is surrounded by mainly Uludag fir, which is characteristic to Uludag, while altitudes lower than 1000 m were composed of mixed deciduous trees. Sampling apparatus and sampling strategy for collection of the studied terpenes on Uludag Mountain were developed. Breakthrough Volume experiments were performed for accurate sampling. Samples were collected in a field campaign performed during October 2002 by means of active sampling onto glass coated stainless steel tubes containing Tenax&amp / #61666 / TA (55 mg) and Carbopack&amp / #61652 / B (65 mg). The mass flow rate and duration of sampling were 30 mL/min and 4 hours. Short-Path-Thermal-Desorption/Gas Chromatography-Mass Spectrometer (SPTD/GC-MS) was used for the analysis of monoterpenes during 12-14 October 2002. The cryogenic preconcentration (-40oC) was maintained by liquid CO2. HP-1-MS capillary column provided good resolution of peaks, except for pulegone and citronellol at standard operation procedure. Internal standard calibration was applied by adding carefully measured spikes of fenchone to the samples and standards. The detection limits for each terpene were found to be at sub-ppbv level. Daily intermediate standard measurements and auto-tune provided checking the instrumental capabilities. Selected Ion Monitoring mode was used for analysis of the terpenes. For quantitation of the spectra at least one qualifier ion was expected to be within 80% correlation with target ion. Alpha-pinene, camphene, beta-pinene, and d-limonene were determined. The average concentrations of monoterpenes were found to be 0.385, 0.168, 0.111, and 0.204 ppbv respectively. Simultaneous measurements of O3, NOx, SO2, and meteorological parameters were also performed. The data resolution was 15 min for each pollutant. Ozone displayed strong diurnal variation (around 5-30 ppb), while NOx concentrations were almost constant around 15 ppb. During the sampling campaign terpenes showed similar behaviours with O3, but not with NOx. Terpenes had a direct relation with temperature and relative humidity.

Page generated in 0.5031 seconds