• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 261
  • 126
  • 61
  • 29
  • 26
  • 19
  • 16
  • 12
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1209
  • 234
  • 181
  • 181
  • 142
  • 124
  • 105
  • 98
  • 92
  • 91
  • 90
  • 73
  • 73
  • 71
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Treatment Of Xenobiotics During Anaerobic Digestion And Its Enhancement Upon Post-ozonation Of The Anaerobically Treated Sludge

Ak, Munire Selcen 01 November 2012 (has links) (PDF)
Treatment of waste sludge has become an important issue in recent years around the world. However, the trend of waste sludge treatment has shifted from volume minimization and stabilization to reuse of the sludge and recover the energy potential of it. Therefore, anaerobic treatment of sludge is gaining popularity because of byproduct methane production and high percentage of VSS reduction. Pre-treatment of sludge before anaerobic digestion in order to increase methane production, and ozone pre-treatment in this context, is one such option. Domestic sludge also contains the recently recognized, so called, emerging compounds such as Endocrine Disrupting Compounds (EDCs). Therefore treatment of EDCs in sludge is another challenge in waste sludge treatment since direct discharge of such chemicals may harm the environment by causing gender shifts within the fauna. In this context two hormones (estrone and progesterone), three pharmaceuticals (acetaminophen, carbamazepine and diltiazem) and one plasticizer (benzyl-butyl phthalate) were routinely analyzed in sludge samples which were subjected to treatment during this study. Treatment of EDCs during anaerobic digestion and the effect of ozonation both on the performance of digestion and the treatability of EDCs were investigated in this study. Four 2.5L anaerobic jars were used for anaerobic digestion connected to four 1L plastic graduated cylinders immersed in salt-water to collect the off gas. Anaerobic sludge culture of the reactor and the sludge feed to the reactors were obtained from Ankara Tatlar Wastewater Treatment Plant anaerobic digester and return activated sludge (RAS) line, respectively. One of the anaerobic digesters was used as control (no ozonation) and the others were fed with sludge samples ozonated at three different ozone doses 0.65, 1.33 and 2.65 mg ozone/g biomass. Sludge ages of the reactors were initially set to 25 days and the reactors were fed once every 2 days. The TSS, VSS, total gas volume, COD, pH, CH4 percentage and EDCs were analyzed routinely. In the reactors, operated at 25 days, because of the observation of reduction of TSS, SRT was set to infinity / thus, sludge wastage was terminated. Following the startup it was seen that at 2.65 mg ozone/g biomass dose TSS and VSS did not stay constant in the reactor and dropped sharply in the course of operation, indicating that system was not steady at this SRT. However, upon stoppage of sludge wastage from the reactors, thereby setting SRT to infinity, a steady culture could be maintained in the reactors. Both total gas production and CH4 percentage increased with the increasing doses of ozone with respect to control reactor. For 2.65 mg/g ozonated reactor total gas volume doubled the amount produced in the control reactor. All the EDCs within the scope of this study were analyzed in sludge using ultrasound-aided sequential sludge extraction method twice a week and the results showed that ozonation affected treatment of EDCs for up to 96%. The highest removal rate was obtained with natural hormones. Rates of treatment of pharmaceuticals were the second best.
652

Regional and urban evaluation of an air quality modelling system in the European and Spanish domains

Pay Pérez, Maria Teresa 22 November 2011 (has links)
El impacto de la contaminación del aire es un tema crítico para el medioambiente y el clima. Una mala calidad del aire es un tema de importancia para la salud pública, especialmente en ambientes urbanos. El material particulado (PM), el ozono (O3) y el dióxido de nitrógeno (NO2) son los contaminantes más problemáticos en Europa y España. La Comisión Europea ha mostrado una gran preocupación por desarrollar técnicas que permitan incrementar el conocimiento sobre la dinámica de los contaminantes atmosféricos para asegurar el cumplimiento de la legislación y para informar a la población acerca de sus niveles. Además, la directiva europea 2008/50/CE establece la posibilidad de usar técnicas de modelización para informar sobre calidad del aire. Esta tesis doctoral está desarrollada en el marco de dos proyectos: El proyecto CALIOPE y el proyecto CICYT CGL2006-08903, ambos basados en la necesidad de desarrollar un sistema de calidad del aire que permita informar y entender los niveles de contaminación en Europa y España, con el objetivo de obtener un preciso pronóstico de la calidad del aire. Con ese propósito, el sistema de modelización CALIOPE se ha desarrollado con alta resolución espacial y temporal sobre Europa (12 km x 12 km y 15 capas, 1 hora), dominio madre, y España (4 km x 4 km y 15 capas, 1 hora), dominio anidado. CALIOPE consiste en un conjunto de modelos que tienen en cuenta la contaminación tanto antropogénica como natural. La disponibilidad del supercomputador MareNostrum, alojado en el Barcelona Supercomputer Center- Centro Nacional de Supercomputación, ha permitido trabajar a tan alta resolución. El objetivo principal de esta tesis es aumentar la confianza científica en el sistema CALIOPE, identificando sus puntos fuertes y débiles con un nivel de detalle que contribuya a establecer necesidades de mejora en el proceso de modelización. Por tanto, el presente trabajo ha evaluado espacial y temporalmente las simulaciones de calidad del aire sobre Europa y España en términos de O3, NO2, SO2, PM2.5 y PM10 en superficie sobre el año completo 2004. Para identificar el origen de las incertidumbres en la modelización del PM, su composición química ha sido también evaluada en ambos dominios. Las evaluaciones han sido realizadas sobre más de 150 estaciones de calidad del aire (más de 2 millones de datos experimentales). Además, esta tesis ha usado el sistema CALIOPE para analizar los patrones de calidad del aire sobre 2004, identificando claramente las áreas de contaminación. Las ideas más importantes que se desprenden de esta tesis son tres. Primero, las condiciones de contorno químicas basadas en un modelo global, como el LMDz-INCA2, son esenciales para modelizar el O3 troposférico sobre los dominios de estudio. Segundo, para simular la concentración de PM en el sur de Europa, tanto a escala rural como urbana, la contribución de polvo procedente del desierto del Sahara deber ser considerada debido a la proximidad al continente africano. La contribución del polvo del desierto a través del modelo BSC-DREAM8b ayuda satisfactoriamente a modelizar los picos de PM10 observados. Tercero, para ser capaz de modelizar la calidad del aire a escala urbana sobre España es esencial (1) una alta resolución espacial y temporal que permita describir fenómenos mesoescalares en áreas de topografía compleja , (2) un modelo de emisiones altamente desagregado como HERMES; (3) unos modelos que representen el estado actual del conocimiento en meteorología y química atmosférica / The impact of air pollution is a critical topic in environment and climate. Poor air quality is an important public health issue, especially in urban environments. Particulate matter (PM), tropospheric ozone (O3) and nitrogen dioxide (NO2) are the main problematic pollutants in Europe and Spain. The European Commission has shown a great concern for developing actions that allow increasing the knowledge on dynamics of atmospheric pollutants to assure the accomplishment of legislation and to inform the population about their levels. The European directive 2008/50/EC establishes the possibility of using modelling techniques to assess air quality. This Ph.D. thesis is developed in the framework of two projects: the CALIOPE project and the CGL2006-08903 CICYT project, both based on the necessity to develop an air quality modelling system that allows assessing and understanding the air pollution levels in Europe and Spain, with the aim of obtaining a precise air quality forecast. For that purpose, the CALIOPE air quality modelling system has been developed with high spatial and temporal resolution over Europe (12 km x 12 km, 1 h), as a mother domain; and Spain (4 km x 4 km, 1 h), as the nested domain. The CALIOPE system consists in a set of models that take into account both anthropogenic and natural pollution. The availability of the MareNostrum supercomputer, held in Barcelona Supercomputing Center- Centro Nacional de Supercomputación, has allowed such configuration of the CALIOPE system. The main objective of the present Ph.D. thesis is to increase the scientific confidence on the CALIOPE system, identifying skills and weakness with a degree of detail that contributes to establish necessities of improvements in the modelling process. Therefore, the present work has spatially and temporally evaluated CALIOPE air quality simulations over Europe and Spain in terms of O3, NO2, SO2, PM2.5, PM10 concentrations over the full year 2004. In order to identify the origin of uncertainties in PM modelling, PM chemical composition has been also evaluated in both target domains. Evaluations have been performed across more than 150 air quality-monitoring stations and over more than 2 million of experimental data. Furthermore, this Ph.D. thesis has used the CALIOPE system to assess air quality pattern over the year 2004, identifying clearly the areas of air pollution. There are three major thrusts of the present Ph.D. thesis. First, chemical boundary condition based on a global model, such as LMDz-INCA2, becomes essential to model O3 background concentrations in the target domains. Second, to simulate PM concentration in southern Europe, both regional and urban scales, the contribution of dust from the Saharan desert should be taken into account, since that region is frequently affected by dust outbreaks due to its proximity to the African continent. The contribution of desert dust through the BSC-DREAM8b helps to satisfactory model the observed episodic PM10 concentration peaks. Even more, the contribution of sea-salt aerosol is especially important over coastal areas. Third, to be able to model the air quality in urban scale over Spain it is essential (1) a high spatial (4 km x 4 km and 15 layers) and temporal (1h) resolution that allows describing mesoscale phenomena in very complex terrains; (2) a high disaggregated emission model to describe the sources, such as HERMES; and (3) an state-of-the-science meteorological and chemical models. This Ph.D. thesis has demonstrated that CALIOPE system applied over Europe and Spain is a useful tool which may contribute to (1) forecast air pollution in urban/suburban areas with a pervasive influence of anthropogenic emissions on a local scale and over very complex terrains and meteorology patterns; (2) assess about air pollution, discriminating between anthropogenic and natural episodes; and (3) manage air pollution, by means of modification of urban strategies or requirements of the legislation.
653

Integration of Ozone and Ultrasound Activated Sludge Pre-Treatments into a Wastewater Treatment Whole-Plant Simulator

Musser, Jonathan January 2010 (has links)
Modern wastewater treatment provides great benefit to society by reducing the transmission of disease. In recent years computer simulation of whole plants has allowed for improved design and more economical consideration of alternatives. One new alternative for wastewater treatment is the pre-treatment of sludges, although this technology has not yet been adapted for computer simulation. This thesis describes research which was conducted to describe pre-treatments in terms appropriate for whole-plant computer models. Pre-treatment shows promise in terms of reducing sludge, a waste product the disposal of which can be costly depending on the applicable regulations. At the same time pre-treatment can improve the generation of biogas, which is readily converted to heat and/or electricity and can help to offset treatment energy requirements. Pre-treatments can be broadly categorized as physical, chemical, or thermal. For this study, ultrasound was selected as a model physical pre-treatment and ozone as a model chemical pre-treatment. The range of doses to be tested was obtained by reviewing earlier literature. Waste activated sludge was obtained from pilot reactors treating screened municipal wastewater. This sludge was subjected to a range of doses in batch reactors. Conventional laboratory analyses were used to determine the effects of pre-treatment on such parameters as chemical oxidant demand, solids, and various nitrogen fractions. As well, respirometry was utilized to estimate the biologically active and bioavailable fractions. A novel technique for analysis of respirometric data was developed, which consisted of fitting synthetic oxygen uptake rate curves to the measured data. Both ultrasound and ozone were observed to decrease the amount of active biomass present while increasing the amount of biodegradable material. The conversions between these fractions were modeled using simple functions of pre-treatment dose. For ultrasound, a conversion which exponentially decayed with respect to increasing ultrasound dose was used to relate these fractions. For ozone, the conversion from active biomass to slowly degradable material occurred more slowly than the conversion to rapidly degradable material; as such two conversions were modeled, each exponentially decaying with respect to dose but with different dose constants. The observed conversions were added to a whole-plant model and the implications of the models were considered for one simple wastewater treatment plant. Both pre-treatments showed a decrease in total sludge production and an increase in biogas production, as predicted by earlier research. Published full-scale results were not reported with sufficient detail to be replicated, and so a quantitative comparison was not possible.
654

Integration of Ozone and Ultrasound Activated Sludge Pre-Treatments into a Wastewater Treatment Whole-Plant Simulator

Musser, Jonathan January 2010 (has links)
Modern wastewater treatment provides great benefit to society by reducing the transmission of disease. In recent years computer simulation of whole plants has allowed for improved design and more economical consideration of alternatives. One new alternative for wastewater treatment is the pre-treatment of sludges, although this technology has not yet been adapted for computer simulation. This thesis describes research which was conducted to describe pre-treatments in terms appropriate for whole-plant computer models. Pre-treatment shows promise in terms of reducing sludge, a waste product the disposal of which can be costly depending on the applicable regulations. At the same time pre-treatment can improve the generation of biogas, which is readily converted to heat and/or electricity and can help to offset treatment energy requirements. Pre-treatments can be broadly categorized as physical, chemical, or thermal. For this study, ultrasound was selected as a model physical pre-treatment and ozone as a model chemical pre-treatment. The range of doses to be tested was obtained by reviewing earlier literature. Waste activated sludge was obtained from pilot reactors treating screened municipal wastewater. This sludge was subjected to a range of doses in batch reactors. Conventional laboratory analyses were used to determine the effects of pre-treatment on such parameters as chemical oxidant demand, solids, and various nitrogen fractions. As well, respirometry was utilized to estimate the biologically active and bioavailable fractions. A novel technique for analysis of respirometric data was developed, which consisted of fitting synthetic oxygen uptake rate curves to the measured data. Both ultrasound and ozone were observed to decrease the amount of active biomass present while increasing the amount of biodegradable material. The conversions between these fractions were modeled using simple functions of pre-treatment dose. For ultrasound, a conversion which exponentially decayed with respect to increasing ultrasound dose was used to relate these fractions. For ozone, the conversion from active biomass to slowly degradable material occurred more slowly than the conversion to rapidly degradable material; as such two conversions were modeled, each exponentially decaying with respect to dose but with different dose constants. The observed conversions were added to a whole-plant model and the implications of the models were considered for one simple wastewater treatment plant. Both pre-treatments showed a decrease in total sludge production and an increase in biogas production, as predicted by earlier research. Published full-scale results were not reported with sufficient detail to be replicated, and so a quantitative comparison was not possible.
655

Application of heterogeneous catalysts in ozonation of model compounds in water

Guzman Perez, Carlos Alberto 18 January 2011 (has links)
The presence of micropollutants, particularly pesticides, in surface waters across Canada has been of concern not only for their environmental impact, but also for their potential effects on human health and recalcitrant nature to conventional water treatment methods. Although ozone has been mainly applied for disinfection of drinking water, oxidation of trace organics by ozonation has been considered potentially effective. In an effort to meet increasingly stringent drinking water regulations, different solid catalysts have been used to enhance the removal of water contaminants by ozonation. In spite of the increasing number of data demonstrating the effectiveness of heterogeneous catalytic ozonation, the influence of different factors on the efficiency of micropollutants oxidation is still unclear.<p> In the present work, application of three solid catalysts in ozonation of two model micropollutants in pure water was examined using a laboratory-scale reaction system over a range of operating conditions. The three catalysts investigated were activated carbon, alumina, and perfluorooctyl alumina, and the two model micropollutants were the pesticides atrazine and 2,4-dichlorophenoxyactic acid. The effects of solution pH, presence of a radical scavenger, pesticide adsorption on catalyst, and catalyst dose on micropollutant removal were investigated. Solution pH was found to significantly influence the catalyst ability to decompose ozone into free hydroxyl radicals. The effect of these free radicals was markedly inhibited by the radical scavenger resulting in a negative impact on pesticides degradation. In general, the removal rate of pesticides was found to increase with increasing doses of catalyst.<p> In the ozonation process in the presence of activated carbon, atrazine removal rates increased four and two times when using a catalyst dose of 0.5 g L-1 at pH 3 and 7, respectively, whereas observed reaction rates for 2,4-D increased over 5 times in the presence of 1 × 10-4 M tert-butyl alcohol at pH 3. In the ozonation system catalyzed by 8 g L-1 alumina, the observed reaction rate constant of atrazine removal notably improved at neutral pH by doubling the micropollutant removal rate. For the pesticide 2,4-D in the presence of 1 × 10-4 M tert-butyl alcohol at pH 5, the observed removal rate was over ten times higher than that for the non-catalytic ozonation process using also using a catalyst dose of 8 g L-1. Modification of alumina to produce perfluorooctyl alumina resulted in a material able to significantly adsorb atrazine, while not exhibiting affinity for adsorption of 2,4-D. In spite of its adsorptive properties, perfluorooctyl alumina was found to enhance neither molecular ozone reactions nor ozone decomposition into hydroxyl radicals. Thus, the observed removal rates for atrazine and 2,4-D by ozonation in the presence of perfluorooctyl alumina did not increase significantly.
656

Treatment of leachate by combining PAC and UV/O3 processes / Kết hợp keo tụ với PAC và quá trình UV/O3 để xử lý nước rỉ rác phát sinh từ bãi chôn lấp chất thải rắn

Van, Huu Tap, Trinh, Van Tuyen, Dang, Xuan Hien 15 November 2012 (has links) (PDF)
The landfill leachate is commonly treated for non-biodegradable organic matters, ammonia and colour. Experimental investigations using polyaluminium chlorite (PAC) and UV/O3 have been conducted for the determination of optimal pH value, reaction time and PAC concentration for the removal of chemical oxygen demand (COD) and colour. In pre-treatment coagulation stages, the highest COD and colour removal efficiencies were observed at the concentration of PAC ≥ 3,000 mglG1 and pH values between 7 and 8. However, these experiments also indicated significant removal efficiency for PAC starting with concentrations of 1,500 mglG1. The efficiency of COD and colour removal were approximately 30% and 70%, respectively. Similar efficiencies have been observed also during the second treatment stage where UV/O3 processes were used to treat coagulated leachate. After UV/O3 application, the pH of leachate reached the optimum value of 7.5 whereas the highest COD and colour removal efficiency was 55% and 72%, respectively, and the optimal reaction time was achieved after 80 min. / Nước rỉ rác sinh ra từ bãi chôn lấp chất thải rắn cần được xử lý các thành phần chất hữu cơ khó phân hủy sinh học, xử lí amoni và độ màu. Một số kết quả thử nghiệm về xử lý COD và màu của nước rỉ rác bằng việc sử dụng phương pháp keo tụ với PAC và quá trình UV/O3 đã được thực hiện cùng với việc xác định các giá trị pH tối ưu, thời gian phản ứng và nồng độ PAC tối ưu. Hiệu suất xử lý cao nhất đạt được khi nồng độ của PAC ≥ 3.000 mg/l, pH trong khoảng từ 7 đển 8 trong giai đoạn tiền xử lý. Tuy nhiên, hiệu quả loại bỏ COD và màu bắt đầu tăng rõ khi nồng độ PAC từ 1.500 mg/l trở lên. Hiệu quả loại bỏ COD và màu tương ứng là khoảng 30% và 70%. Các giá trị pH này phù hợp cho quá trình phản ứng UV/O3 được sử dụng sau giai đoạn keo tụ. Sau quá trình xử lý bằng hệ UV/O3, pH của nước rỉ rác tối ưu được xác định là 7,5 (hiệu suất xử lý COD và màu cao nhất tương ứng là 55% và 72%), thời gian phản ứng tối ưu là 80 phút.
657

Location Choice and the Value of Spatially Delineated Amenities

Bishop, Kelly Catherine 25 April 2008 (has links)
<p>In the first chapter of this dissertation, I outline a hedonic equilibrium model that explicitly controls for moving costs and forward-looking behavior. Hedonic equilibrium models allow researchers to recover willingness to pay for spatially delineated amenities by using the notion that individuals "vote with their feet." However, the hedonic literature and, more recently, the estimable Tiebout sorting model literature, has largely ignored both the costs associated with migration (financial and psychological), as well as the forward-looking behavior that individuals exercise in making location decisions. Each of these omissions could lead to biased estimates of willingness to pay. Building upon dynamic migration models from the labor literature, I estimate a fully dynamic model of individual migration at the national level. By employing a two-step estimation routine, I avoid the computational burden associated with the full recursive solution and can then include a richly-specified, realistic state space. With this model, I am able to perform non-market valuation exercises and learn about the spatial determinants of labor market outcomes in a dynamic setting. Including dynamics has a significant positive impact on the estimates of willingness to pay for air quality. In addition, I find that location-specific amenity values can explain important trends in observed migration patterns in the United States.</p><p>The second chapter of this dissertation describes a model which estimates willingness to pay for air quality using property value hedonics techniques. Since Rosen's seminal 1974 paper, property value hedonics has become commonplace in the non-market valuation of environmental amenities, despite a number of well-known methodological problems. In particular, recovery of the marginal willingness to pay function suffers from important endogeneity biases that are difficult to correct with instrumental variables procedures [Epple (1987)]. Bajari and Benkard (2005) propose a "preference inversion" procedure for recovering heterogeneous measures of marginal willingness to pay that avoids these problems. However, using cross-sectional data, their approach imposes unrealistic constraints on the elasticity of marginal willingness to pay. Following Bajari and Benkard's suggestion, I show how data describing repeat purchase decisions by individual home buyers can be used to relax these constraints. Using data on ozone pollution in the Bay Area of California, I find that endogeneity bias and flexibility in the shape of the marginal willingness to pay function are both important.</p><p>Finally, in the third chapter of this dissertation, I combine the insights of the Bajari-Benkard inversion approach employed in second chapter with more standard estimation techniques (i.e., Rosen (1974)) to arrive at a new hedonic methodology that allows for flexible and heterogeneous preferences while avoiding the endogeneity problems that plague the traditional Rosen two-stage model. Implementing this estimator using the Bay Area ozone data, I again find evidence of considerable heterogeneity and of endogeneity bias. In particular, I find that a one unit deterioration in air quality (measured in days in which ozone levels exceed the state standards) raises marginal willingness to pay by $145.18 per year. The canonical two-stage Rosen model finds, counter-intuitively, that this same change would reduce marginal willingness to pay by $94.24.</p> / Dissertation
658

Innovative Treatment Technologies for Reclaimed Water

Bandy, Jeff January 2009 (has links)
<p>In order to meet disinfection guidelines, wastewater utilities must achieve a high level of treatment before discharging treated water for irrigation or industrial use. However, public pressure to reduce disinfection by-products and pharmaceutically-active compounds, recently-promulgated regulations on chlorine-resistant microorganisms such as Cryptosporidium parvum, and growth in population and water demand have driven an interest in alternatives to chlorination. The WateReuse Foundation has funded WRF 02-009 (Innovative Treatment Technologies for Reclaimed Water), which is a survey of current and emerging reuse water treatment technologies. The goal of the project is to evaluate treatment technologies can provide adequate recycled water effluent without the cost of reverse osmosis (RO) or the disinfection by-products (DBPs) formed during chlorination.</p><p>The inactivation of indigenous microorganisms (total and fecal coliform bacteria, and total aerobic spores) and spiked surrogate, respiratory, and enteric viruses (MS-2 bacteriophage, adenovirus type 4, reovirus type 3, and coxsackievirus type B5) and chemical degradation by wastewater treatment technologies was evaluated on the bench-scale. These include: low- and medium-pressure UV, LPUV/H<sub>2</sub>O<sub>2</sub>, ozonation, O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>, peracetic acid (PAA), LPUV/PAA, chlorination, chloramination, and ultrafiltration. The applicability of the candidate disinfection methods, especially emerging and comparatively untested methods such as PAA and advanced oxidation processes (AOPs), was studied through comparison of their performance and the important water matrix parameters (e.g., alkalinity, BOD, TSS, etc.).</p><p>Of the chemical disinfectants, molecular ozone and free chlorine were the most effective, with substantial coliform and virus kill at low doses. Combined chlorine in the form of monochloramine had a reduced disinfectant capacity than free chlorine, and peracetic acid (PAA) performed equally as well as free chlorine with respect to coliform bacteria in some instances but had little to no impact on spiked MS2 bacteriophage. None of the aforementioned disinfectants had an appreciable impact on indigenous aerobic spore-forming bacteria due to their physiology. UV and O<sub>3</sub> rapidly killed human enteric and respiratory viruses, but a consistent benefit by AOPs over their base technologies was not observed for any of their base technologies.</p><p>Low and medium-pressure UV inactivated free-floating indigenous coliform bacteria almost immediately, while slower inactivation rates at higher UV fluences illustrated the "tailing" behavior observed when bacteria are embedded in or shielded by particulate matter. Log-linear inactivation of spiked viruses and indigenous aerobic spores by UV was consistent across the utility waters. The UV-based advanced oxidation processes (UV/H<sub>2</sub>O<sub>2</sub> and UV/PAA) destroyed spiked organic compounds at much higher rates than direct UV photolysis, while O<sub>3</sub>, with or without H<sub>2</sub>O<sub>2</sub> , oxidized spiked compounds and reduced estrogenicity (EEQ) at low doses. Recalcitrant chlorinated hydrocarbons such as TCEP were only moderately removed by the tested AOPs, but low doses of O<sub>3</sub> (3 ppm residual O<sub>3</sub>) reduced estrogenic activity by 99%. Like other disinfection processes, AOP performance is dependant on pretreatment, especially concerning particulates.</p> / Dissertation
659

Photochemical Formation and Cost-Efficient Abatement of Ozone: High-Order Sensitivity Analysis

Cohan, Daniel Shepherd 20 September 2004 (has links)
The abatement of ground-level ozone has been a priority of air pollution policy because of its harmful effects on human health, ecosystems, and climate. The responsiveness of ozone to emissions of its principal precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), is known to depend nonlinearly on spatially and temporally variable factors. Given this variability, scientific understanding of ozone formation processes can facilitate the development of sensible control policies. This thesis applies a high-order sensitivity analysis technique, the Decoupled Direct Method in Three Dimensions (HDDM-3D), to examine ozone response to precursor emissions during summertime air pollution episodes in the southeastern United States. HDDM-3D is shown to accurately capture ozone response within an underlying air quality model, even over large ranges of emission perturbations. Nonlinearity of response is quantified, and nonlinear terms are applied to examine how estimates of sensitivity and source attribution respond to uncertainty in an emissions inventory. Ozone production regime is assessed using both HDDM-3D and species indicator ratios and found to be primarily NOx-limited outside urban centers. However, ozone response to region-wide emissions does not necessarily correspond to its sensitivity to local controls, hindering the usefulness of bipartite ozone regime classification. Significant heterogeneity of ozone response to NOx is found even over small spatial scales of emission origin, a potential complication often ignored in atmospheric modeling and emissions trading mechanisms. Atmospheric sensitivity analysis is linked with a comprehensive menu of potential control measures to demonstrate potential integration of scientific and economic considerations for control strategy formulation. Cost-optimized strategies are identified for attainment of federal ozone standards in Macon, Georgia, and for minimizing potential population exposure to unhealthful concentrations of ozone.
660

Biooxidation of gas-borne hydrogen sulfide and chemical oxidation of gas-borne odorants from rubber processing

Peng, Chih-Hao 02 June 2011 (has links)
This dissertation consists of two parts on the treatment of hydrogen sulfide and odorants in gases emitted from rubber processing industry. In the first part, we study performance of removal hydrogen sulfide with bioscrubber. An activated sludge aeration tank (W ¡Ñ L ¡Ñ H = 0.40 ¡Ñ 0.40 ¡Ñ 3.00 m) with a 2 mm-orifice air sparger was used to treat gaseous hydrogen sulfide (H2S). The investigation tested the operational stability as well as how the removal ability of H2S was affected by influent H2S concentration (C0 = 50-900 ppm), aeration intensity (Q/V = 0.083-0.50 m3 m-3 min-1), liquid depth (H = 0.5-3.0 m), and mixed-liquor suspended solids concentration (MLSS = 970-2,800 mg L-1). Experimental results indicate that H2S removal efficiencies of 96% and over 98% were obtained with H = 0.5 m and H > 1.0 m in the cited operation conditions, respectively. Experimental results also indicate no sludge bulking problem occurred with total sulfide loadings of 0.047-0.148 kg S kg-1 MLSS d-1. The second part aimed at the removal of odorous compounds in gases emitted from rubber processing industries. Simulated odorous gas for test was prepared by mixing fresh air and an odorous gas drawn from an oven in which a sample of rubber powder was kept either at 160¢XC (for a thermal plastic rubber) or 200¢XC (for a thermal setting rubber). The prepared odorous gas was then premixed with a definite amount of ozone-enriched air and introduced into a contact system. The contact system consists of two sieve-plate columns connected in series and each column has four 1-L chambers. Depending on with or without introducing circulating scrubbing water into the columns, the oxidation reaction could be either wet or dry one. Results indicate the wet oxidation got better performances than the dry one. The former got 97 and over 90% removal of VOCs (volatile organic compounds) and odorous intensity removal, respectively, with the operation conditions of initial ozone concentration 4.0 ppm, THC (total hydrocarbon) concentrations 6.5¡V10.3 ppm (methane equivalent), oxidation temperature 37.3¢XC, gas empty bed retention time (EBRT) 12 s, and liquid/gas rate ratio 0.01 m3/m3. With conditions similar to those cited above, odor concentration (dilutions to the threshold, D/T) in the test gas could be reduced from 1,738¡V3,090 to 31¡V98 with EBRTs of 11.4¡V14.5 s. Activated carbon is effective for both physical and chemical removals of residual VOCs, odorous compounds, and ozone in the effluent gas from the ozonation system. Economical analysis indicates that around US$ 0.16 is required for treating 1,000 m3 of the tested foul gas by the proposed ozonation process.

Page generated in 0.0405 seconds