Spelling suggestions: "subject:"comedian model"" "subject:"comedian godel""
1 |
CO2-efficient retail locations: Building a web-based DSS by the Waterfall MethodologyMulbah, Julateh K, Gebreslassie Kahsay, Tilahun January 2021 (has links)
Several studies have been carryout on finding optimal locations to minimize CO2 emissions from the last mile distribution perspective. In conjunction with that, there has been no study conducted in Sweden that provides a decision support system to compute the transport consequences of the modifications in the retailer’s store network. This thesis did used the following steps: requirement analysis, system design, implementation and testing to build a prototype decision support system that is to help retailers find optimal locations for a new retail store. This thesis provided a subsequent answer as to which data are needed along with the rightful user interface for said decision support system. Subsequently, this thesis does present a decision support system prototype from which some recommendations were provided as to what skills set and tools are needed for the management and maintenance of said decision support system. The primary data used during this thesis is the Dalarna municipalities, six selected retailer’s stores networks and the Dalarna Road network geo-data (Longitude and latitude). This thesis does conclude that it is possible to integrate an optimization model within the Django framework using a geo data to build a decision support system.
|
2 |
How do different densities in a network affect the optimal location of service centers?Han, Mengjie, Håkansson, Johan, Rebreyend, Pascal January 2013 (has links)
The p-median problem is often used to locate p service centers by minimizing their distances to a geographically distributed demand (n). The optimal locations are sensitive to geographical context such as road network and demand points especially when they are asymmetrically distributed in the plane. Most studies focus on evaluating performances of the p-median model when p and n vary. To our knowledge this is not a very well-studied problem when the road network is alternated especially when it is applied in a real world context. The aim in this study is to analyze how the optimal location solutions vary, using the p-median model, when the density in the road network is alternated. The investigation is conducted by the means of a case study in a region in Sweden with an asymmetrically distributed population (15,000 weighted demand points), Dalecarlia. To locate 5 to 50 service centers we use the national transport administrations official road network (NVDB). The road network consists of 1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the network and increase the number of candidate nodes in steps up to 67,000. To find the optimal solution we use a simulated annealing algorithm with adaptive tuning of the temperature. The results show that there is a limited improvement in the optimal solutions when nodes in the road network increase and p is low. When p is high the improvements are larger. The results also show that choice of the best network depends on p. The larger p the larger density of the network is needed.
|
3 |
Medical Imaging Centers in Central Indiana: Optimal Location Allocation AnalysesSeger, Mandi J. 01 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While optimization techniques have been studied since 300 B.C. when Euclid first considered the minimal distance between a point and a line, it wasn’t until 1966 that location optimization was first applied to a problem in healthcare. Location optimization techniques are capable of increasing efficiency and equity in the placement of many types of services, including those within the healthcare industry, thus enhancing quality of life. Medical imaging is a healthcare service which helps to determine medical diagnoses in acute and preventive care settings. It provides physicians with information guiding treatment and returning a patient back to optimal health. In this study, a retrospective analysis of the locations of current medical imaging centers in central Indiana is performed, and alternate placement as determined using optimization techniques is considered and compared. This study focuses on reducing the drive time experienced by the population within the study area to their nearest imaging facility. Location optimization models such as the P-Median model, the Maximum Covering model, and Clustering and Partitioning are often used in the field of operations research to solve location problems, but are lesser known within the discipline of Geographic Information Science. This study was intended to demonstrate the capabilities of these powerful algorithms and to increase understanding of how they may be applied to problems within healthcare. While the P-Median model is effective at reducing the overall drive time for a given network set, individuals within the network may experience lengthy drive times. The results further indicate that while the Maximum Covering model is more equitable than the P-Median model, it produces large sets of assigned individuals overwhelming the capacity of one imaging center. Finally, the Clustering and Partitioning method is effective at limiting the number of individuals assigned to a given imaging center, but it does not provide information regarding average drive time for those individuals. In the end, it is determined that a capacitated Maximal Covering model would be the preferred method for solving this particular location problem.
|
4 |
Road network and GPS tracking with data processing and quality assessmentZhao, Xiaoyun January 2015 (has links)
GPS technology has been embedded into portable, low-cost electronic devices nowadays to track the movements of mobile objects. This implication has greatly impacted the transportation field by creating a novel and rich source of traffic data on the road network. Although the promise offered by GPS devices to overcome problems like underreporting, respondent fatigue, inaccuracies and other human errors in data collection is significant; the technology is still relatively new that it raises many issues for potential users. These issues tend to revolve around the following areas: reliability, data processing and the related application. This thesis aims to study the GPS tracking form the methodological, technical and practical aspects. It first evaluates the reliability of GPS based traffic data based on data from an experiment containing three different traffic modes (car, bike and bus) traveling along the road network. It then outline the general procedure for processing GPS tracking data and discuss related issues that are uncovered by using real-world GPS tracking data of 316 cars. Thirdly, it investigates the influence of road network density in finding optimal location for enhancing travel efficiency and decreasing travel cost. The results show that the geographical positioning is reliable. Velocity is slightly underestimated, whereas altitude measurements are unreliable.Post processing techniques with auxiliary information is found necessary and important when solving the inaccuracy of GPS data. The densities of the road network influence the finding of optimal locations. The influence will stabilize at a certain level and do not deteriorate when the node density is higher.
|
5 |
Locating Mobile Parcel Lockers for Last-Mile Delivery on Urban Road NetworksConsidering Traffic and Customer Preferred Modes of TransportationAl-Adaileh, Mohammad Ali 16 September 2022 (has links)
No description available.
|
6 |
A Travel Time Estimation Model for Facility Location on Real Road NetworksAl Adaileh, Mohammad Ali 20 September 2019 (has links)
No description available.
|
Page generated in 0.0323 seconds