• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification des partenaires protéiques de l'hélicase virale E1 du virus du papillome humain : caractérisation d'une nouvelle interaction avec la protéine à domaines WD p80

Côté-Martin, Alexandra January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

The Role of Arabidopsis thaliana P80 in Inositol Signaling

Rangarajan, Padma 14 June 2013 (has links)
The myo-inositol signaling pathway in plants allows them to sense external environmental stimuli and respond to them. This signaling pathway depends on the dynamic levels of the second messenger, inositol(1,4,5)trisphosphate, which in turn is regulated by inositol polyphosphate 5-phosphatases (5PTases). Previous studies have shown that 5PTase 13 binds an important energy sensor, Sucrose non-fermenting (Snf) 1-related kinase (SnRK1.1) and also a novel protein P80. Studies from the lab have also shown that P80 is a part of a deubiquitinating enzyme complex along with WDR20 and Ubiquitin-specific protease called UBP3. Our p80 mutants have a root deficient phenotype under low energy conditions which is normalized by addition of sucrose. p80 mutants show reduced growth and early senescence under specific environmental conditions. This is opposite in nature to SnRK1.1 overexpressors. In this study, I have examined the possible interaction of P80 with SnRK1. I have studied the effects of expression of the exogenous SnRK1.1:GFP transgene under the control of the 35S CaMV promoter in the p80 mutant. This will facilitate the delineation of mechanisms that plants use for the control of energy sensing. I also examined the effects of the overexpression of SnRK1.2:GFP in the p80 mutant. Further, I have explored the presence of a new class of molecules, inositol phosphate molecules (InsPs) containing pyrophosphate bonds (PPx) in p80 mutants. Recent evidence has shown that this class of molecules has roles in sensing and signaling. I have demonstrated that InsP7 is present in developing seeds and vegetative tissue of higher plants. I have also demonstrated that p80 mutants have an alteration in the levels of PPx-InsPs. In addition, I have established spatial expression patterns of two enzymes involved in the synthesis of PPx-InsPx, known as VIP kinases. These studies will help resolve how PPx-InsPs are regulated in plants and thus help in their functional characterization. / Master of Science
3

Molecular Characterization of Arabidopsis thaliana Snf1-Related Kinase 1

Hess, Jenna E. 09 June 2011 (has links)
Plants have molecular mechanisms for nutrient-related stress responses; however, their exact regulation remains unclear. For example, the integral myo-inositol (inositol) signal transduction pathway allows Arabidopsis thaliana to sense and respond to changes in environmental stimuli, such as water, light availability, and nutrient stress. The inositol signaling pathway relies on dynamic changes in second messenger levels of inositol(1,4,5)P3 (InsP3) and is regulated by myo-inositol polyphosphate 5-phosphatases (5PTases). The 5PTses keep balance between InsP3 signal transduction and termination. Previous work has identified the Sucrose non-fermenting (Snf) 1-related kinase (SnRK1.1) as a binding partner to 5PTase13, a potential InsP3 regulator, and a novel protein called P80, a predicted component of the Cullin4 (CUL4) E3 Ubiquitin ligase complex. In plants, SnRK1.1 is a central integrator of metabolism, stress responses, and developmental signals. Moreover, SnRK1.1 is conserved with the eukaryotic AMP-activated protein (AMPK) and Snf1 kinases—enzymes fundamental to transcriptional regulation and metabolic balance. Studying SnRK1.1 regulation may reveal mechanisms for agricultural sustainability and may offer valuable links to understanding metabolic diseases and lifespan in humans. Therefore, the research presented here centered on characterizing the regulation of SnRK1 gene expression and steady-state protein levels in plants. I show developmental and nutrient-related regulation of spatial expression patterns of SnRK1 genes and SnRK1.1 protein. Further, I present a model for regulation of SnRK1.1 protein stability in vivo based on SnRK1.1 steady-state protein levels in p80 and cul4 co-suppressed (cs) mutants. My results indicate SnRK1.1 regulation is dynamic, and dependent on the timing of particular cues from development and the environment. / Master of Science
4

Identification and Functional Role of Myo-Inositol Polyphosphate 5-Phosphatase Protein Complexes

Ananieva-Stoyanova, Elitsa Antonova 25 June 2009 (has links)
To survive, an organism must constantly adjust its internal state to changes in the environment from which it receives signals. The signals set off a chain of events referred to signal transduction. Signal transduction systems are especially important in multicellular organisms, such as plants and animals, because of the need to coordinate the activities of hundreds to trillions of cells. Plants, in particular, have a special need for perceiving signals from their environment because of their static nature. As in the animal cell, the first steps in perception of a signal include signal interaction with a receptor, signal amplification through second messenger production, and signal termination through second messenger hydrolysis. Myo-inositol polyphosphate 5-phosphatases (5PTases) (EC 3.1.3.56) have unique signal terminating abilities toward the second messenger inositol trisphosphate (Ins (1,4,5)P3, InsP3). In Arabidopsis thaliana there are 15 members of the 5PTase family, the majority of which contain a single 5PTase catalytic domain. Four members of the Arabidopsis 5PTase family, however, have a unique protein domain structure, with additional N-terminal WD40 repeats that are implicated in protein-protein interactions. The research presented here focused on the identification of 5PTase interacting proteins and the characterization of their functional role in Arabidopsis. To accomplish this goal, I examined a 5PTase13-interacting protein, the sucrose (Suc) nonfermenting-1-related kinase, SnRK1.1, an important energy sensor that is highly conserved among eukaryotes. My identification of a 5PTase13:SnRK1.1 complex points to the novel interaction of this metabolic modulator and inositol signaling/metabolism. 5PTase13 , however, plays a regulatory role in other plant specific processes as well, since I also identified the Arabidopsis homolog (Atp80) of the human WDR48 (HsWDR48, Hsp80) as a novel protein interactor of 5PTase13. My results indicate that Atp80 is important for leaf emergence, development and senescence likely via a regulatory interaction with 5PTase13 and PINOID â binding protein (PBP1). / Ph. D.
5

Caractérisation de la fonction de la protéine cellulaire p80/UAF1 dans la réplication du génome du virus du papillome humain

Lehoux, Michaël 01 1900 (has links)
Le virus du papillome humain (VPH) est l’agent étiologique du cancer du col utérin, ainsi que d’autre néoplasies anogénitales et des voies aérodigestives supérieures. La réplication de son génome d’ADN double brin est assurée par les protéines virales E1 et E2, de concert avec la machinerie cellulaire de réplication. E1 assure le déroulement de l’ADN en aval de la fourche de réplication, grâce à son activité hélicase, et orchestre la duplication du génome viral. Nos travaux antérieurs ont démontré que le domaine N-terminal de E1 contient un motif de liaison à la protéine cellulaire p80/UAF1 qui est hautement conservé chez tous les VPH anogénitaux. L’intégrité de ce motif est essentielle au maintien de l’épisome viral. Les travaux présentés dans cette thèse ont d’abord déterminé que le motif de liaison à UAF1 n’est pas requis pour l’assemblage du pré-réplisome viral, mais important pour la réplication subséquente de l’ADN du VPH. Nous avons constaté qu’en présence de E1 et E2, UAF1 est relocalisé dans des foyers nucléaires typiques de sites de réplication du virus et qu’en outre, UAF1 s’associe physiquement à l’origine de réplication du VPH. Nous avons aussi déterminé que l’inhibition du recrutement de UAF1 par la surexpression d’un peptide dérivé de E1 (N40) contenant le motif de liaison à UAF1 réduit la réplication de l’ADN viral. Cette observation soutient le modèle selon lequel UAF1 est relocalisé par E1 au réplisome pour promouvoir la réplication de l’ADN viral. UAF1 est une protéine à domaine WD40 n’encodant aucune activité enzymatique et présumée exploiter des interactions protéine-protéine pour accomplir sa fonction. Nous avons donc investigué les protéines associées à UAF1 dans des cellules du col utérin et avons détecté des interactions avec les enzymes de déubiquitination USP1, USP12 et USP46, ainsi qu’avec la phosphatase PHLPP1. Nous avons établi que E1 forme un complexe ternaire avec UAF1 et n’importe laquelle des USP associés : USP1, USP12 ou USP46. Ces USP sont relocalisés au noyau par E1 et s’associent à l’ADN viral. De plus, l’activité enzymatique des USP est essentielle à la réplication optimale du génome viral. Au contraire, PHLPP1 ne forme pas de complexe avec E1, puisque leurs interactions respectives avec UAF1 sont mutuellement exclusives. PHLPP1 contient un peptide de liaison à UAF1 homologue à celui de E1. Ce peptide dérivé de PHLPP1 (P1) interagit avec le complexe UAF1-USP et, similairement au peptide N40, antagonise l’interaction E1-UAF1. Incidemment, la surexpression du peptide P1 inhibe la réplication de l’ADN viral. La génération de protéines chimériques entre P1 et des variants de E1 (E1Δ) défectifs pour l’interaction avec UAF1 restaure la capacité de E1Δ à interagir avec UAF1 et USP46, ainsi qu’à relocaliser UAF1 dans les foyers nucléaires contenant E1 et E2. Ce recrutement artificiel de UAF1 et des USP promeut la réplication de l’ADN viral, un phénotype dépendant de l’activité déubiquitinase du complexe. Globalement, nos travaux suggèrent que la protéine E1 du VPH interagit avec UAF1 afin de recruter au réplisome un complexe de déubiquitination dont l’activité est importante pour la réplication de l’ADN viral. / Human papillomaviruses (HPVs) are the etiological agents of cervical cancers, as well as multiple other anogenital and oropharyngeal neoplesias. The viral proteins E1 and E2, in concert with the host DNA replication machinery, mediate the replication of the double-stranded DNA genome of HPV. E1 exploits its helicase activity to unwind DNA ahead of the replication fork and orchestrates synthesis of the viral genome. Our previous work demonstrated that E1 contains in its N-terminus a binding motif for the host protein p80/UAF1, a domain that is highly conserved amongst anogenital HPVs. The integrity of this region was essential for the maintenance of the viral episome. The research presented here first demonstrated that the UAF1-binding motif is not required for the assembly of the E1-E2-Origin pre-replisome, but important for the following viral DNA replication. We have determined that UAF1 is relocalized, in presence of E1 and E2, in nuclear foci reminiscent of viral DNA synthesis sites. UAF1 also physically interacted, through E1-binding, with the viral origin of replication. Moreover, we have shown that inhibition of E1-UAF1 interaction through the overexpression of an E1-derived and UAF1-binding peptide, N40, interferes with HPV DNA replication. This is in agreement with the model according to which E1 recruits UAF1 to the replisome to promote viral DNA replication. UAF1 is a WD40-containing protein with no enzymatic activity and presumed to function through interactions with other cellular factors. We have investigated the UAF1 interaction network in cervical cells and discovered that UAF1 associates with the deubiquitinating enzymes USP1, USP12 and USP46, as well as with the phosphatase PHLPP1. E1 was found to assemble as a ternary complex with UAF1 and any of the associated USPs: USP1, USP12 or USP46. These USPs were also relocalized by E1 to the nucleus and they associated with the viral origin in presence of E2. Moreover, their enzymatic function was essential for optimal viral genome replication. In contrast, PHLPP1 did not associate with E1, and the interactions of the latter proteins with UAF1 were shown to be mutually exclusive. PHLPP1 contains a UAF1-binding motif homologous to the one encoded within E1. This PHLPP1-derived peptide, P1, interacts with the UAF1-USP complex and, similarly to N40, competes with E1-UAF1 interaction. Accordingly, P1 overexpression leads to inhibition of HPV DNA replication. The fusion of the peptide P1 to an E1 protein (E1Δ) defective for UAF1-binding restored its capacity to interact with UAF1 and USP46, as well as to relocalize UAF1 into E1-E2-containing nuclear foci. This artificial recruitment of UAF1 and of the associated USPs increased viral DNA replication, a process that involved the enzymatic activity of the USPs. Collectively, our work suggests that HPV E1 interacts with UAF1 in order to recruit to the replisome a deubiquitinating complex whose activity is required for optimal viral DNA replication.
6

Okamžitá diagnostika stavu letadlových proudových motorů / Immediate diagnostics of aircraft jet engines

Valuch, Tomáš January 2016 (has links)
In this diploma thesis is elaborated design of diagnostic system for small jet engines. The aim is to describe the types of possible failures of jet engines, to determine important parameters characterizing the immediate state of engine and define methods for measurement of selected parameters. The first part is devoted to a description of selected types of small turbojet engines, followed by a summary of the most widely used diagnostic methods for assessing the health condition of the engine during operation. The next chapter contains calculation of the engine thermal cycle with characteristics of construction components. Then there is analysis of small jet engine failures with a description of their causes and possibilities of identification by diagnostic system. Thesis continues with a description of measurement methods and selection of the required sensors. Next chapter is focused on the proposed diagnostic system for condition monitoring of the engine. The last part is devoted to an excursion in laboratory for jet engine testing at the Technical University in Košice.

Page generated in 0.0338 seconds