• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un nouvel essai de complémentation protéique pour l'étude des interactions protéine-protéine : le PCA de la bêta-lactamase

Galarneau, André January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Mise au point d'une approche de sélection génétique de peptides inhibiteurs d'interactions protéiques fonctionnelles en cellules de mammifères

Ostiguy, Alexandre January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Identification des partenaires protéiques de l'hélicase virale E1 du virus du papillome humain : caractérisation d'une nouvelle interaction avec la protéine à domaines WD p80

Côté-Martin, Alexandra January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Fonctions de l'oncoprotéine LMO2 déterminées par ses interactions protéiques

Sincennes, Marie-Claude 10 1900 (has links)
La leucémie lymphoïde représente environ 30% des cas de cancer chez l’enfant. Elle est souvent causée par des réarrangements chromosomiques impliquant des gènes encodant des facteurs de transcription, qui contrôlent des programmes génétiques complexes. Par exemple, LMO2 (LIM-only 2) est un facteur de transcription oncogénique fréquemment exprimé de façon aberrante dans les leucémies lymphoblastiques aigues des cellules T (T-ALL). Dans l’hématopoïèse normale, LMO2 est essentiel à la génération des cellules souches hématopoïétiques à l’origine de toutes les cellules sanguines. D’ailleurs, certaines cellules leucémiques possèdent des propriétés normalement réservées aux cellules souches hématopoïétiques. Ainsi, l’étude de la fonction de LMO2 dans les cellules souches hématopoïétiques peut être pertinente autant dans le contexte hématopoïétique normal que leucémique. Afin de mettre en évidence de nouvelles fonctions moléculaires pour LMO2, j’ai choisi d’identifier les protéines qui s’y associent. En plus de ses partenaires connus, j’ai identifié plusieurs protéines de transcription/remodelage de la chromatine, en accord avec son rôle transcriptionnel. Plusieurs nouvelles fonctions potentielles ont été révélées, indiquant que cette protéine adaptatrice pourrait faire partie de complexes non transcriptionnels, régulant d’autres processus cellulaires. Les oncogènes comme LMO2 pourraient être des régulateurs à large spectre. Particulièrement, j’ai identifié des interactions entre LMO2 et des protéines de réplication de l’ADN. J’ai montré que LMO2 contrôle la réplication de l’ADN dans les cellules hématopoïétiques, et possiblement durant la leucémogenèse, indépendamment de son rôle transcriptionnel. Ensemble, ces études ont donc permis de révéler de nouvelles fonctions pour LMO2, et pourraient servir de paradigme pour d’autres facteurs de transcription oncogéniques, particulièrement aux autres protéines de la famille LMO, qui sont aussi des oncogènes puissants. / Lymphoid leukemia represents about 30% of childhood cancer cases. It is often caused by chromosomal rearrangements involving genes coding for transcription factors, controlling complex genetic programs. As an example, the oncogenic transcription factor LMO2 (LIM-only 2) is often aberrantly expressed in T cell acute lymphoblastic leukemia (T-ALL). In normal hematopoiesis, LMO2 is essential for the generation of hematopoietic stem cells that give rise to all blood cells. Moreover, some leukemic cells possess properties normally reserved to hematopoietic stem cells. Thus, studying the role of LMO2 in hematopoietic stem cells could be relevant to the contexts of normal hematopoiesis and leukemogenesis. To reveal new molecular functions for LMO2, I chose to identify its associated proteins. In addition to its known protein partners, I identified many proteins involved in transcription/chromatin remodeling, in agreement with its transcriptional role. In addition, several new potential functions have been revealed, indicating that this scaffold protein could be part of non-transcriptional protein complexes, regulating different cell processes. Oncogenes like LMO2 could be master regulators in normal hematopoietic and leukemic cells. Particularly, I identified protein-protein interactions between LMO2 and DNA replication proteins. I demonstrated that LMO2 controls S phase progression in hematopoietic cells, independently of its association in transcriptional complexes. LMO2 overexpression in mice induces T-ALL and affects specifically the cell cycle status of thymocyte progenitors, which are targets of transformation by LMO2. Thus, LMO2 promotes DNA replication in hematopoietic cells, and possibly in leukemogenesis. Together, these studies allowed to reveal new functions for LMO2, and could serve as a paradigm for other oncogenic transcription factors, especially for other LMO proteins which are all potent oncogenes.
5

Vers une nouvelle stratégie pour l'assemblage interactif de macromolécules / Towards an interactive tool for the protein docking

Chavent, Matthieu 30 January 2009 (has links)
Même si le docking protéine-protéine devient un outil incontournable pour répondre aux problématiques biologiques actuelles, il reste cependant deux difficultés inhérentes aux methodes actuelles: 1) la majorité de ces méthodes ne considère pas les possibles déformations internes des protéines durant leur association. 2) Il n'est pas toujours simple de traduire les informations issues de la littérature ou d'expérimentations en contraintes intégrables aux programmes de docking. Nous avons donc tenté de développer une approche permettant d'améliorer les programmes de docking existants. Pour cela nous nous sommes inspirés des méthodologies mises en place sur des cas concrets traités durant cette thèse. D'abord, à travers la création du complexe ERBIN PDZ/Smad3 MH2, nous avons pu tester l'utilité de la Dynamique Moléculaire en Solvant Explicite (DMSE) pour mettre en évidence des résidus importants pour l'interaction. Puis, nous avons étendu cette recherche en utilisant divers serveurs de docking puis la DMSE pour cibler un résultat consensus. Enfin, nous avons essayé le raffinage par DMSE sur une cible du challenge CAPRI et comparé les résultats avec des simulations courtes de Monte-Carlo. La dernière partie de cette thèse portait sur le développement d'un nouvel outil de visualisation de la surface moléculaire. Ce programme, nommé MetaMol, permet de visualiser un nouveau type de surface moléculaire: la Skin Surface Moléculaire. La distribution des calculs à la fois sur le processeur de l'ordinateur (CPU) et sur ceux de la carte graphique (GPU) entraine une diminution des temps de calcul autorisant la visualisation, en temps réel, des déformations de la surface moléculaire. / Protein-protein docking has become an extremely important challenge in biology, however, there remain two inherent difficulties: 1) most docking methods do not consider possible internal deformations of the proteins during their association; 2) it is not always easy to translate information from the literature or from experiments into constraints suitable for use in protein docking algorithms. Following these conclusions, we have developed an approach to improve existing docking programs. Firstly, through modelling the ERBIN PDZ / Smad3 MH2 complex, we have tested the utility of Molecular Dynamics with Explicit Solvent (MDSE) for elucidating the key residues in an interaction. We then extended this research by using several docking servers and the DMSE simulations to obtain a consensus result. Finally, we have explored the use of DMSE refinement on one of the targets from the CAPRI experiment and we have compared those results with those from short Monte-Carlo simulations. Another aspect of this thesis concerns the development of a novel molecular surface visualisation tool. This program, named MetaMol, allows the visualisation of a new type of molecular surface: the Molecular Skin Surface. Distributing the surface calculation between a computer's central processing unit (CPU) and its graphics card (GPU) allows deformations of the molecular surface to be calculated and visualised in real time.
6

Microscopie de fluorescence résolue en temps et en polarisation pour le suivi d’interactions protéiques en neurobiologie / Time and polarisation resolved microscopy to follow proteins interactions in neurobiology

Devauges, Viviane 15 December 2011 (has links)
Le suivi des interactions entre protéines, localisées à la membrane plasmique ou à l’intérieur de cellules, a été réalisé au cours de cette thèse par imagerie de fluorescence et par l’analyse de processus dits de FRET (Forster Resonance Energy Transfer). Pour quantifier le FRET entre nos protéines d’intérêt, nous avons choisi le contraste de durée de vie de fluorescence car cette méthode est indépendante de la concentration et de l’intensité de fluorescence. Afin d’obtenir une résolution suffisante pour des problématiques neurobiologiques, un microscope TIRFLIM (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) avait préalablement été développé. Celui-ci nous permet de faire de l’imagerie en plein champ avec une résolution axiale sub-longueur d’onde. Ce dispositif a été calibré et optimisé au cours de cette thèse pour répondre au mieux à des problématiques biologiques. Différentes approches ont ainsi été testées dans le but de calibrer la profondeur de pénétration de l’onde évanescente. Des surfaces plasmoniques ont entre autres été utilisées pour augmenter la sélectivité axiale du montage. Notre microscope a été dédié à l’étude de l’effet du cholestérol sur l’interaction entre la protéine précurseur de l’amyloïde APP, protéine transmembranaire impliquée dans la maladie d’Alzheimer et une de ses enzymes de clivage BACE1. Nous avons ainsi effectué un suivi dynamique de l’effet du cholestérol sur l’interaction entre APP et BACE1 dans des cellules HEK-293 et dans des cultures primaires de neurones d’hippocampe d’embryons de rat, de la membrane plasmique à l’intérieur des cellules grâce à notre dispositif TIRFLIM. La mesure d’anisotropie de fluorescence résolue en temps a également été implémentée sur notre montage. Ces mesures résolues en temps et en polarisation ont permis de mesurer le temps de corrélation rotationnelle de fluorophores et de mettre en évidence de manière qualitative différents niveaux d’homodimérisation de protéines impliquées dans la maladie d’Alzheimer. / In the framework of this thesis, we have used FRET (Forster Resonance Energy Transfer) as a mechanism to follow the interaction of proteins from the plasma membrane to the cytoplasm of cells. To quantify FRET, we have chosen Fluorescence Lifetime Imaging Microscopy (FLIM) since this method is independent of the concentration and intensity of the fluorophores. To have a good axial resolution, a TIRFLIM set-up (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) was developed and this allowed us to perform wide-field imaging with sub-wavelength axial resolution. This set-up was calibrated and optimized in order to answer biological questions. Different approaches were tested in order to measure the penetration depth of the evanescent field and especially plasmonic surfaces were used to further enhance the axial resolution. Our set-up was dedicated to the study of the effect of cholesterol on the interaction between the Amyloid Precursor Protein (APP), a transmembrane protein involved in Alzheimer Disease, and one of its cleaving enzyme (BACE1). We performed a dynamic tracking of APP and BACE1 proximity under the effect of cholesterol, in HEK-293 cells and primary cultures of embryonic rat hippocampal neurons, thanks to our TIRFLIM set-up.Time-resolved fluorescence anisotropy has been implemented on our set-up. This has enabled us to measure the rotational correlation time of fluorophores and to investigate quantitatively different states of homodimerization of proteins involved in Alzheimer’s disease.
7

Fonctions de l'oncoprotéine LMO2 déterminées par ses interactions protéiques

Sincennes, Marie-Claude 10 1900 (has links)
La leucémie lymphoïde représente environ 30% des cas de cancer chez l’enfant. Elle est souvent causée par des réarrangements chromosomiques impliquant des gènes encodant des facteurs de transcription, qui contrôlent des programmes génétiques complexes. Par exemple, LMO2 (LIM-only 2) est un facteur de transcription oncogénique fréquemment exprimé de façon aberrante dans les leucémies lymphoblastiques aigues des cellules T (T-ALL). Dans l’hématopoïèse normale, LMO2 est essentiel à la génération des cellules souches hématopoïétiques à l’origine de toutes les cellules sanguines. D’ailleurs, certaines cellules leucémiques possèdent des propriétés normalement réservées aux cellules souches hématopoïétiques. Ainsi, l’étude de la fonction de LMO2 dans les cellules souches hématopoïétiques peut être pertinente autant dans le contexte hématopoïétique normal que leucémique. Afin de mettre en évidence de nouvelles fonctions moléculaires pour LMO2, j’ai choisi d’identifier les protéines qui s’y associent. En plus de ses partenaires connus, j’ai identifié plusieurs protéines de transcription/remodelage de la chromatine, en accord avec son rôle transcriptionnel. Plusieurs nouvelles fonctions potentielles ont été révélées, indiquant que cette protéine adaptatrice pourrait faire partie de complexes non transcriptionnels, régulant d’autres processus cellulaires. Les oncogènes comme LMO2 pourraient être des régulateurs à large spectre. Particulièrement, j’ai identifié des interactions entre LMO2 et des protéines de réplication de l’ADN. J’ai montré que LMO2 contrôle la réplication de l’ADN dans les cellules hématopoïétiques, et possiblement durant la leucémogenèse, indépendamment de son rôle transcriptionnel. Ensemble, ces études ont donc permis de révéler de nouvelles fonctions pour LMO2, et pourraient servir de paradigme pour d’autres facteurs de transcription oncogéniques, particulièrement aux autres protéines de la famille LMO, qui sont aussi des oncogènes puissants. / Lymphoid leukemia represents about 30% of childhood cancer cases. It is often caused by chromosomal rearrangements involving genes coding for transcription factors, controlling complex genetic programs. As an example, the oncogenic transcription factor LMO2 (LIM-only 2) is often aberrantly expressed in T cell acute lymphoblastic leukemia (T-ALL). In normal hematopoiesis, LMO2 is essential for the generation of hematopoietic stem cells that give rise to all blood cells. Moreover, some leukemic cells possess properties normally reserved to hematopoietic stem cells. Thus, studying the role of LMO2 in hematopoietic stem cells could be relevant to the contexts of normal hematopoiesis and leukemogenesis. To reveal new molecular functions for LMO2, I chose to identify its associated proteins. In addition to its known protein partners, I identified many proteins involved in transcription/chromatin remodeling, in agreement with its transcriptional role. In addition, several new potential functions have been revealed, indicating that this scaffold protein could be part of non-transcriptional protein complexes, regulating different cell processes. Oncogenes like LMO2 could be master regulators in normal hematopoietic and leukemic cells. Particularly, I identified protein-protein interactions between LMO2 and DNA replication proteins. I demonstrated that LMO2 controls S phase progression in hematopoietic cells, independently of its association in transcriptional complexes. LMO2 overexpression in mice induces T-ALL and affects specifically the cell cycle status of thymocyte progenitors, which are targets of transformation by LMO2. Thus, LMO2 promotes DNA replication in hematopoietic cells, and possibly in leukemogenesis. Together, these studies allowed to reveal new functions for LMO2, and could serve as a paradigm for other oncogenic transcription factors, especially for other LMO proteins which are all potent oncogenes.
8

Microscopie de fluorescence résolue en temps et en polarisation pour le suivi d'interactions protéiques en neurobiologie

Devauges, Viviane 15 December 2011 (has links) (PDF)
Le suivi des interactions entre protéines, localisées à la membrane plasmique ou à l'intérieur de cellules, a été réalisé au cours de cette thèse par imagerie de fluorescence et par l'analyse de processus dits de FRET (Forster Resonance Energy Transfer). Pour quantifier le FRET entre nos protéines d'intérêt, nous avons choisi le contraste de durée de vie de fluorescence car cette méthode est indépendante de la concentration et de l'intensité de fluorescence. Afin d'obtenir une résolution suffisante pour des problématiques neurobiologiques, un microscope TIRFLIM (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) avait préalablement été développé. Celui-ci nous permet de faire de l'imagerie en plein champ avec une résolution axiale sub-longueur d'onde. Ce dispositif a été calibré et optimisé au cours de cette thèse pour répondre au mieux à des problématiques biologiques. Différentes approches ont ainsi été testées dans le but de calibrer la profondeur de pénétration de l'onde évanescente. Des surfaces plasmoniques ont entre autres été utilisées pour augmenter la sélectivité axiale du montage. Notre microscope a été dédié à l'étude de l'effet du cholestérol sur l'interaction entre la protéine précurseur de l'amyloïde APP, protéine transmembranaire impliquée dans la maladie d'Alzheimer et une de ses enzymes de clivage BACE1. Nous avons ainsi effectué un suivi dynamique de l'effet du cholestérol sur l'interaction entre APP et BACE1 dans des cellules HEK-293 et dans des cultures primaires de neurones d'hippocampe d'embryons de rat, de la membrane plasmique à l'intérieur des cellules grâce à notre dispositif TIRFLIM. La mesure d'anisotropie de fluorescence résolue en temps a également été implémentée sur notre montage. Ces mesures résolues en temps et en polarisation ont permis de mesurer le temps de corrélation rotationnelle de fluorophores et de mettre en évidence de manière qualitative différents niveaux d'homodimérisation de protéines impliquées dans la maladie d'Alzheimer.
9

Modulation de l’expression du gène CFTR par le produit du gène FIC1 responsable de la cholestase familiale intra-hépatique progressive de type 1 : Identification des mécanismes moléculaires impliqués

Sergent, Jacques-Aurélien 05 1900 (has links)
Réalisé en cotutelle avec l'Université de Cergy-Pontoise / La cholestase intra-hépatique familiale progressive de type 1 (PFIC1) humaine est une maladie génétique rare, provoquée par des mutations du gène ATP8B1, due à un défaut de sécrétion des acides biliaires. Un syndrome moins sévère, et épisodique, appelé Cholestase Intra-hépatique Récurrente Bénigne (BRIC) a pu être associé à des mutations au sein du même gène. Les patients PFIC1 souffrent de nombreuses manifestations extra-hépatiques. Certaines de ces manifestations sont communes aux patients mucoviscidosiques. Le niveau d’expression de CFTR, gène responsable de la mucoviscidose, est diminué chez les patients PFIC1. Cette étude a porté sur l’analyse des interactions/régulations entre CFTR et ATP8B1. Une première approche a été de montrer l’expression de ces gènes dans différentes lignées cellulaires puis d’identifier la présence de leurs protéines par western blot et immunofluorescence. Une seconde approche a été d’effectuer une analyse in silico de la structure d’ATP8B1 par rapport à sa fonction. Nous avons aussi localisés les modifications connues sur un modèle 2D. Cette analyse a permis de mettre en évidence en plus des sites connus (ATPase et domaines transmembranaires), deux sites de maturations par clivage ainsi qu’un domaine riche en phosphorylation, des domaines PDZ et un domaine d’interaction avec des récepteurs nucléaires et des facteurs de transcription. A partir d’un polypeptide de 180 kDa, le clivage au niveau des sites identifiés produit un peptide de 145 kDa puis un de 90 kDa, révélés par western blot avec un anticorps dirigé contre la partie CTerminale de la protéine. Ce peptide de 90 kDa, après myristoylation, pourrait interagir avec des récepteurs nucléaires et des facteurs de transcriptions. Ces interactions nous ont permis de monter un modèle qui pourrait expliquer la diminution d’expression génique de différents gènes observés chez les malades PFIC1. Cette analyse a été poursuivie par une étude de l’interactome d’ATP8B1 qui a montré une interaction possible avec CFTR directement ou par l’intermédiaire d’une protéine de liaison, PDZK1. Une dernière étude a porté sur la fonctionnalité de CFTR dans deux lignées portant des mutations différentes d’ATP8B1. L’ensemble des résultats montre qu’ATP8B1 participerait à la régulation de l’expression du gène CFTR mais aussi à sa maturation fonctionnelle. / Human Progressive Familial Intrahepatic Cholestasis type 1 (PFIC1) is a rare genetic disease provoked by mutations inside the ATP8B1 gene resulting in a general loss of bile acids secretion. An episodic and less severe syndrome called Benign Recurrent Intrahepatic Cholestasis (BRIC) have also been associated with mutations in this gene. PFIC1 patients are suffering from many extra-hepatic manifestations. Some of these manifestations are common to Cystic Fibrosis (CF) patients, carrying mutations in CFTR gene. Moreover, expression of CFTR is decreased for some PFIC1 patients. This study was carried out to define the role of ATP8B1 in the modulation of CFTR gene expression and protein function. A first approach was to identify both gene expression and protein synthesis among various cell lines. Then, we developed a second approach based on in silico analysis of structure and function of ATP8B1 to construct a 2D model of the protein. This approach was correlated with the localization of known mutations of ATP8B1. This analysis showed two possible protein maturation sites, a rich phosphorylation domain and a nuclear receptor interacting domain. The cleavage of the 180 kDa peptide generates a 145kDa (ATPase) and a second cleavage produces a 90 kDa, all identified with a specific antibody directed toward the C-Terminal region of the protein. The 90 kDa peptide should be readdressed to the nucleus after myristoylation to interact with nuclear receptors and transcription factors. This analysis was completed by an interactomic approach which has shown a possible interaction between CFTR and ATP8B1 proteins either directly or mediated by a linker, PDZK1. The last part of this work was dedicated to assess the role of ATP8B1 on the activity of CFTR using two cell lines expressing two different mutated ATP8B1 genes. From all these results, we concluded that ATP8B1 is probably involved in the regulation of CFTR gene expression and CFTR maturation and function. We therefore propose a schematic representation of ATP8B1 synthesis and maturation associated with its putative biological functions in the cell.
10

Modulation de l’expression du gène CFTR par le produit du gène FIC1 responsable de la cholestase familiale intra-hépatique progressive de type 1 : Identification des mécanismes moléculaires impliqués

Sergent, Jacques-Aurélien 05 1900 (has links)
La cholestase intra-hépatique familiale progressive de type 1 (PFIC1) humaine est une maladie génétique rare, provoquée par des mutations du gène ATP8B1, due à un défaut de sécrétion des acides biliaires. Un syndrome moins sévère, et épisodique, appelé Cholestase Intra-hépatique Récurrente Bénigne (BRIC) a pu être associé à des mutations au sein du même gène. Les patients PFIC1 souffrent de nombreuses manifestations extra-hépatiques. Certaines de ces manifestations sont communes aux patients mucoviscidosiques. Le niveau d’expression de CFTR, gène responsable de la mucoviscidose, est diminué chez les patients PFIC1. Cette étude a porté sur l’analyse des interactions/régulations entre CFTR et ATP8B1. Une première approche a été de montrer l’expression de ces gènes dans différentes lignées cellulaires puis d’identifier la présence de leurs protéines par western blot et immunofluorescence. Une seconde approche a été d’effectuer une analyse in silico de la structure d’ATP8B1 par rapport à sa fonction. Nous avons aussi localisés les modifications connues sur un modèle 2D. Cette analyse a permis de mettre en évidence en plus des sites connus (ATPase et domaines transmembranaires), deux sites de maturations par clivage ainsi qu’un domaine riche en phosphorylation, des domaines PDZ et un domaine d’interaction avec des récepteurs nucléaires et des facteurs de transcription. A partir d’un polypeptide de 180 kDa, le clivage au niveau des sites identifiés produit un peptide de 145 kDa puis un de 90 kDa, révélés par western blot avec un anticorps dirigé contre la partie CTerminale de la protéine. Ce peptide de 90 kDa, après myristoylation, pourrait interagir avec des récepteurs nucléaires et des facteurs de transcriptions. Ces interactions nous ont permis de monter un modèle qui pourrait expliquer la diminution d’expression génique de différents gènes observés chez les malades PFIC1. Cette analyse a été poursuivie par une étude de l’interactome d’ATP8B1 qui a montré une interaction possible avec CFTR directement ou par l’intermédiaire d’une protéine de liaison, PDZK1. Une dernière étude a porté sur la fonctionnalité de CFTR dans deux lignées portant des mutations différentes d’ATP8B1. L’ensemble des résultats montre qu’ATP8B1 participerait à la régulation de l’expression du gène CFTR mais aussi à sa maturation fonctionnelle. / Human Progressive Familial Intrahepatic Cholestasis type 1 (PFIC1) is a rare genetic disease provoked by mutations inside the ATP8B1 gene resulting in a general loss of bile acids secretion. An episodic and less severe syndrome called Benign Recurrent Intrahepatic Cholestasis (BRIC) have also been associated with mutations in this gene. PFIC1 patients are suffering from many extra-hepatic manifestations. Some of these manifestations are common to Cystic Fibrosis (CF) patients, carrying mutations in CFTR gene. Moreover, expression of CFTR is decreased for some PFIC1 patients. This study was carried out to define the role of ATP8B1 in the modulation of CFTR gene expression and protein function. A first approach was to identify both gene expression and protein synthesis among various cell lines. Then, we developed a second approach based on in silico analysis of structure and function of ATP8B1 to construct a 2D model of the protein. This approach was correlated with the localization of known mutations of ATP8B1. This analysis showed two possible protein maturation sites, a rich phosphorylation domain and a nuclear receptor interacting domain. The cleavage of the 180 kDa peptide generates a 145kDa (ATPase) and a second cleavage produces a 90 kDa, all identified with a specific antibody directed toward the C-Terminal region of the protein. The 90 kDa peptide should be readdressed to the nucleus after myristoylation to interact with nuclear receptors and transcription factors. This analysis was completed by an interactomic approach which has shown a possible interaction between CFTR and ATP8B1 proteins either directly or mediated by a linker, PDZK1. The last part of this work was dedicated to assess the role of ATP8B1 on the activity of CFTR using two cell lines expressing two different mutated ATP8B1 genes. From all these results, we concluded that ATP8B1 is probably involved in the regulation of CFTR gene expression and CFTR maturation and function. We therefore propose a schematic representation of ATP8B1 synthesis and maturation associated with its putative biological functions in the cell. / Réalisé en cotutelle avec l'Université de Cergy-Pontoise

Page generated in 0.1119 seconds