451 |
Synthesis of 1,2,3-Triazole-fused Heterocycles via Palladium Catalyzed Annulation of 5-IodotriazolesSchulman, Jacqueline Madeleine 20 December 2011 (has links)
Increasing attention has recently been directed toward 1,2,3-triazole-containing compounds. With their unique properties and excellent stability, 1,4-disubstituted triazoles are readily accessible via the copper catalyzed azide alkyne cycloaddition (CuAAC). As compounds containing fused triazoles become common in pharmaceutical targets and biologically active substances, new strategies to synthesize this class of molecules are highly desirable.
An efficient and highly modular approach toward the synthesis of three different heterocyclic motifs containing fused 1,2,3-triazoles is reported. The synthesis involved a Pd-catalyzed annulation of 5-iodo-1,2,3-triazoles, which were prepared by a Cu(I)-catalyzed cycloaddition of iodoalkynes and azides. This work demonstrates the versatility of iodotriazoles in Heck reactions and in direct arylations.
|
452 |
Domino C-H Functionalization Reactions of gem-Dibromoolefins: Synthesis of N-Fused Benzo[c]carbazolesHuang, Richard Yichong 20 November 2012 (has links)
The development of a novel palladium-catalyzed domino reaction with indole-based gem-dibromoolefin substrates is described. The reaction allowed access to a new class of polycyclic nitrogen heterocycles: N-fused benzo[c]carbazoles. A key feature of this domino reaction was the participation of both bromides in C–H functionalization processes, a hitherto unprecedented reactivity. Various substituents and substitution patterns were tolerated in this reaction, allowing for a highly modular approach to these challenging synthetic targets. Mechanistic studies were performed to gain further insight into the reactivity of these systems and elucidate the sequence of reaction steps. The results indicate that isomerization of reaction intermediates likely played a key role in promoting a successful reaction.
|
453 |
Synthesis of 1,2,3-Triazole-fused Heterocycles via Palladium Catalyzed Annulation of 5-IodotriazolesSchulman, Jacqueline Madeleine 20 December 2011 (has links)
Increasing attention has recently been directed toward 1,2,3-triazole-containing compounds. With their unique properties and excellent stability, 1,4-disubstituted triazoles are readily accessible via the copper catalyzed azide alkyne cycloaddition (CuAAC). As compounds containing fused triazoles become common in pharmaceutical targets and biologically active substances, new strategies to synthesize this class of molecules are highly desirable.
An efficient and highly modular approach toward the synthesis of three different heterocyclic motifs containing fused 1,2,3-triazoles is reported. The synthesis involved a Pd-catalyzed annulation of 5-iodo-1,2,3-triazoles, which were prepared by a Cu(I)-catalyzed cycloaddition of iodoalkynes and azides. This work demonstrates the versatility of iodotriazoles in Heck reactions and in direct arylations.
|
454 |
Domino C-H Functionalization Reactions of gem-Dibromoolefins: Synthesis of N-Fused Benzo[c]carbazolesHuang, Richard Yichong 20 November 2012 (has links)
The development of a novel palladium-catalyzed domino reaction with indole-based gem-dibromoolefin substrates is described. The reaction allowed access to a new class of polycyclic nitrogen heterocycles: N-fused benzo[c]carbazoles. A key feature of this domino reaction was the participation of both bromides in C–H functionalization processes, a hitherto unprecedented reactivity. Various substituents and substitution patterns were tolerated in this reaction, allowing for a highly modular approach to these challenging synthetic targets. Mechanistic studies were performed to gain further insight into the reactivity of these systems and elucidate the sequence of reaction steps. The results indicate that isomerization of reaction intermediates likely played a key role in promoting a successful reaction.
|
455 |
Synthesis of Highly Functionalized Tetrahydroisoquinolines by a Palladium-catalyzed Domino ortho-Alkylation/Heck Reaction Sequence and Diastereoselective Aryne Diels-Alder ReactionsTurcotte-Savard, Marc-Olivier 15 July 2009 (has links)
We report a palladium-catalyzed, norbornene mediated synthesis of tetrahydroisoquinolines via a domino ortho-alkylation/Heck reaction sequence. The desired products are obtained in moderate to excellent yields starting from readily available aryl iodides. The reaction conditions can be extended to the formation of tetrahydroisoquinolinones and tetrahydrobenzo[c]azepines. The reaction allows for sequential intermolecular and intramolecular ortho-alkylations. However, the product yields are higher with ortho-blocked aryl iodides, which simplify the domino process to one intramolecular ortho-alkylation and a Heck reaction.
The Lautens group has previously reported diastereoselective aryne Diels-Alder reactions of benzyne with dienes supporting a chiral auxiliary at its terminal carbon. In an effort to extend this work and allow access to a wider variety of 1,4-dihydronaphthalenes, we attempted the synthesis of dienes supporting a chiral auxiliary at a central carbon. Chiral pyridyne precursors were also synthesized, in an attempt to vary the source of chirality in diastereoselective cycloadditions.
|
456 |
Palladium (II) and platinum (II) complexes of cyanomethyl (diphenyl) phosphine and o-cyanophenyl (diphenyl) phosphineTrujillo, Horeb 03 June 2011 (has links)
Cyanomethyl(diphenyl)phosphine (L) and o-cyanopheryl(diphenyl)phosphine (LI) react with H2PdX4 (X = Cl, Br) or K2PtCl4 to yield complexes of the type MX2E2(M = Pd, Pt; E = L, L'). Infrared and nuclear magnetic resonance spectroscopic data indicate that L and Ĺ are coordinated through the phosphorus atom, and that the Land L'-containing complexes have cis and trans geometries, respectively, The MC12E2 complexes react with potassium thiocyanate to yield derivatives of the type 1,(NCS):,L9, in which the thiocyanate groups are nitrogen-bonded to 'the metal.The reaction of L, L' or PdX2E2 (E = L or L') with either PdX2 (X = Cl, Br) or Na2PdX4, in a 1 to 1.1 mole ratio yields complexes of the type (PdX2E.)n. Infrared data indicate that the (PdX2L)n complexes are ligand- and the (PdX2L')n complexes halogen-bridged species.Ball State UniversityMuncie, IN 47306
|
457 |
Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained AlkenesThansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate.
The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines.
In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones.
Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.
|
458 |
Studies on the Mechanism of Direct Arylation of Pyridine N oxides: Evidence for the Essential Involvement of Acetate from the Pd(OAc)2 Pre-Catalyst at the C-H Bond Cleaving StepSun, Ho-Yan 08 February 2011 (has links)
Detailed mechanistic studies on the palladium-catalyzed direct arylation of pyridine N-oxides are presented. The order of each reaction component is determined to provide a general mechanistic picture. The C-H bond cleaving step is examined in further detail through computational studies, and the calculated results are in support of an inner-sphere concerted metallation-deprotonation (CMD) pathway. Competition experiments were conducted using N-oxides of varying electronic characters, and results revealed an enhancement of rate when using a more electron-deficient species which is in support of a CMD transition state. The effect of base on reaction rate was also examined and it was found that a carboxylate base was required for the reaction to proceed. This led to the conclusion that Pd(OAc)2 plays a pivotal role in the reaction mechanism as more than merely a pre-catalyst, but as a source of acetate base required for the C-H bond cleavage step.
|
459 |
Part A: Palladium-Catalyzed C–H Bond Functionalization Part B: Studies Toward the Synthesis of Ginkgolide C using Gold(I) CatalysisLapointe, David 26 January 2012 (has links)
The field of metal-catalyzed C–H bond functionalizations is an incredibly vibrant and spans beyond the formations of biaryl motifs. The introduction chapter will cover the mechanistic aspects of the C–H bond functionalization with metal-carboxylate complexes. The mechanistic facets of this reaction will be the main conducting line between the different sections and chapters of the first part of this thesis. In the second chapter, will be described additives that can readily promoted C–H bond arylation of poorly reactive substrates. More specifically, we will revisit the intramolecular direct arylation reaction we will demonstrate the effect of pivalic acid as a co-catalyst by developing milder reaction conditions. In the third chapter we be described experimental and computational studies which suggested that the a single pathway might be involved in the palladium-catalyzed C–H bond functionalization of a wide range of (hetero)arene. Following this we will describe a general set of conditions for the direct arylation of wide range of heteroarenes. Also, we will present two different strategies to selectively and predictably arylate substrates containing multiple functionalizable C–H bonds. In the fourth chapter will be presented our efforts toward the development of new C–H bond functionalization methods in which we could apply our knowledge on the C–H bond cleavage and apply it to the formation of new scaffolds. The development of two new palladium-catalyzed methods were also described. In the fifth chapter, our effort toward the development of ligands to specifically promoted C–H bond cleavage will be presented. In the sixth chapter will be presented the latest results on the study of the mechanism of the C–H bond cleavage combining experimental and computational studies. In part B of this thesis will be presented our strategy toward the total synthesis of ginkgolide C that included two gold(I)-catalyzed reactions as key steps in the preparation of the spiro[4.4]nonane core of this natural product. The first studies on the feasibility of the key steps of the synthesis will be described.
|
460 |
Electrochemically deposited metal nanostructures for application in genosensorsSoreta, Tesfaye Refera 17 December 2009 (has links)
Las señales de los biosensores se pueden mejorar mediante el diseño de superficies transductoras. En este sentido, se han investigado diversos métodos para la nanoestructuración de superficies. El primero de ellos se basó en la formación inicial de monocapas autoensambladas (SAM) de alcanotioles sobre sustratos bimetálicos, seguida de la desorción reductiva selectiva (SRD) de las SAM de determinados metales. Se consiguió la SRD de 2-mercaptoetanol de dominios de paladio desde una superficie de platino-oro. El segundo método para preparar superficies nanoestructuradas que se investigó fue la nucleación electroquímica secuencial de las nanopartículas metálicas (oro y paladio) sobre electrodos de carbón vidrio para las SAM de alcanotiol y para aumentar la densidad de las nanopartículas sin permitir la formación de agregados. Con este método, las señales redox de las SAM alcanotiol ferrocenil eran seis y cincuenta veces mejores que los electrodos de oro y paladio, respectivamente. Finalmente, se demostró la nanoestructuración de las superficies de los electrodos para mejorar la señal de un biosensor de ADN. / Biosensor signals can be enhanced by specifically designing transducer surfaces. In this thesis, several surface nanostructuring approaches have been investigated. The first approach studied was based on the initial formation of self-assembled monolayers (SAM) of alkanethiols on bi-metallic substrates, followed by the selective reductive desorption (SRD) of the SAM from one of the metals. SRD of 2-mercaptoethanol from palladium domains of a palladium-gold surface was achieved. The second nanostructured surface preparation method investigated was the sequential electrochemical nucleation of metal nanoparticles (gold and palladium) on glassy carbon electrode and SAM formation on the NPs to prevent aggregation and by that increasing the number densities. With this method, a six-fold and a fifty fold enhancement in the ferrocenyl alkanethiol SAM redox signal was achieved in comparison to plain gold and palladium electrodes, respectively. Finally, electrode surface nanostructuring using sequentially nucleated gold nanoparticles for signal enhancement of DNA biosensor was demonstrated.
|
Page generated in 0.0267 seconds