• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 174
  • 110
  • 70
  • 40
  • 34
  • 23
  • 18
  • 9
  • 9
  • 8
  • 8
  • 5
  • 5
  • 5
  • Tagged with
  • 1373
  • 283
  • 268
  • 156
  • 148
  • 129
  • 129
  • 124
  • 117
  • 107
  • 105
  • 102
  • 96
  • 88
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Mechanism of the Heck reaction: nature of oxidative addition and migratory insertion

Evans, Anthony Steven 15 November 2004 (has links)
The mechanism of carbon coupling reactions is traditionally represented in a very broad schematic. This thesis seeks to explore the mechanism of these reactions by focusing on Heck olefination. The Heck reaction has become a powerful tool in synthetic labs but the mechanism of this reaction has remained a topic of debate since the reaction's discovery. The catalytic cycle that has come to be accepted, while accurate in its own right, is not nearly as detailed as the complexity of the various stages of the Heck reaction suggest it should be. This study seeks to elucidate the nature of the oxidative addition of aryl halide to a palladium catalyst using a ligand that has been shown to have high activity in facilitating oxidative addition of aryl chlorides and bromides in other coupling reactions. This information is then compared to other studies in the field so that conclusions can be drawn about the oxidative addition. Also, selectivity studies seek to determine the nature of the migratory insertion of an olefin into the Pd-Ar bond. Again, comparison of results obtained in this study are compared to previous results so that a more definitive conclusion can be drawn about the oxidative addition.
442

New Methods for the Synthesis of Vicinal Stereocenters : Palladium-Catalyzed Domino Reactions and Asymmetric Transfer Hydrogenation

Seashore-Ludlow, Brinton January 2012 (has links)
In this thesis the synthesis of vicinal stereocenters is investigated in two distinct contexts, namely the construction of 3,3-disubstituted oxindoles and the synthesis of b-hydroxy-a-amino acids. Both scaffolds are prevalent in a range of natural products and biologically relevant compounds and, therefore, methods for their synthesis are of great import. First, the construction of 3,3-disubstituted oxindoles using palladium-catalyzed domino reactions is described.  This covers two stereospecific methods for the construction of the desired oxindoles based on domino carbopalladation sequences.  The termination events for these domino reactions are carbonylation or cross-coupling.  In the carbopalladation-carbonylation reaction, we studied the possibilty of suppressing b-hydride elimination for substrates possessing pendant b-hydrogens.  In the carbopalladation-cross-coupling sequence, we examined the role of the boron source and substrate scaffold in the outcome of the reaction.  In both of these methods, an intricate balance of rates needs to be attained in order to achieve the desired domino sequences.  Thus, these investigations offer insight into the rates of the competing reactions, and the factors that influence these processes. Secondly, the stereoselective synthesis of b-hydroxy-a-amino acids is explored.  This has lead to two separate methods for the construction of this scaffold.  We first examined a 1,3-dipolar cycloaddition of azomethine ylides to aldehydes for the construction of syn-b-hydroxy-a-amino esters.  It was found that one set of azomethine ylides reacted through a 1,3-dipolar cycloaddition, while the other set reacted via a direct aldol reaction.  Finally, we studied an asymmetric transfer hydrogenation reaction to provide anti-b-hydroxy-a-amido esters from the corresponding a-amido-b-ketoesters.  Two protocols were developed for the reduction of these substrates, one using triethylammonium formate and the other using sodium formate in an emulsion.  The latter method gives high yields, diastereoselectivities and enantioselectivities for a broad range of substrates. / QC 20120605
443

Experimental Investigation of Catalytic Combustion of Simulated Gasified Biomass for Gas Turbine Applications

Jacoby, Jürgen January 2001 (has links)
No description available.
444

Fast Microwave-Enhanced Intra-, Pseudo-intra- and Intermolecular Heck Reactions

Svennebring, Andreas January 2006 (has links)
The Heck reaction is one of the most appreciated methods for carbon-carbon bond formation. Due to its mildness and ability to be tuned by additives, it often leaves few alternative competitive reactions. It has also proven easy to develop the reaction conditions in an environmentally benign direction. Through the introduction of palladium chelating groups in olefinic precursors for the Heck reaction, it has been possible to direct the substitution in the following Heck arylation in favor of the terminal position with good regioselectivity. In this thesis, the concept has been utilized to produce a small array of drug-like compounds at useful yields under fast microwave-enhanced conditions utilizing the thermostable Herrmanns palladacycle. During the last decade, this, together with other palladacycles has become commonly employed as precatalyst for the Heck reaction. However, there have been conflicting opinions regarding the mechanisms governing its catalytic effect. A PdII-PdIV catalytic cycle has been suggested to be operative, in contrast to the classical Pd0-PdII cycle. In order to clarify the presence of such a mechanism, a set of Heck reactions was performed with the advent of different palladium precatalysts (classical and palladacycles), which revealed that the regiochemicαal substitution pattern is highly conserved, regardless of which precatalyst was employed, and thus, the same mechanism seems to be operative. This is also supported by data from ESI-MS investigations where all the reactions investigated gave rise to the same set of oxidative addition complexes. A crafted route to 3-aryl-1,2-cyclohexandiones has been developed in which 1,2-cyclohexandione is produced is situ from 2,3-epoxycyclohexanone, followed by Heck arylation. A diverse array of aryl bromides encompassing electron-rich, electron-poor, neutral and sterically hindered repressentatives has been successfully utilized to produce the corresponding products at useful yields.The intramolecular Heck reaction offers a route to quaternary carbonic centersand is being increasingly exploited in synthetic endeavors. However, the use of electron-rich olefinic precursors is only reported in a few cases. The implementation of one capto-dative and five electron-rich olefins has therefore been successfully subjected to Heck reaction conditions rendering the corresponding spiro compounds.
445

Development of New Synthetic Routes to Organoboronates by Catalytic Allylic Substitution and C-H bond Functionalization

Olsson, Vilhelm January 2009 (has links)
This thesis describes the development of new catalytic methods for the synthesis and application of organometallic reagents, mainly focusing on allylboronic acid derivatives. Thus, palladium pincer-complex catalysis has been applied for extending the scope of palladiumcatalyzed borylation reactions in the synthesis of regio- and stereodefined functionalized allylboronic acid derivatives. These novel allylboronic acids were also employed as substrates in palladium catalyzed regioselective coupling reactions with iodobenzenes. We have also developed a new one-pot sequence based on preparation of allyl- and vinylboronates via catalytic carbon-hydrogen bond activation/borylation reactions. The synthetic scope of the reaction as well as mechanistic studies on the borylation process are presented. Finally, the synthesis of new chiral palladium pincer-complexes is described. These species were employed as catalysts in asymmetric electrophilic allyation of imines.
446

Studies on the Mechanism of Direct Arylation of Pyridine N oxides: Evidence for the Essential Involvement of Acetate from the Pd(OAc)2 Pre-Catalyst at the C-H Bond Cleaving Step

Sun, Ho-Yan 08 February 2011 (has links)
Detailed mechanistic studies on the palladium-catalyzed direct arylation of pyridine N-oxides are presented. The order of each reaction component is determined to provide a general mechanistic picture. The C-H bond cleaving step is examined in further detail through computational studies, and the calculated results are in support of an inner-sphere concerted metallation-deprotonation (CMD) pathway. Competition experiments were conducted using N-oxides of varying electronic characters, and results revealed an enhancement of rate when using a more electron-deficient species which is in support of a CMD transition state. The effect of base on reaction rate was also examined and it was found that a carboxylate base was required for the reaction to proceed. This led to the conclusion that Pd(OAc)2 plays a pivotal role in the reaction mechanism as more than merely a pre-catalyst, but as a source of acetate base required for the C-H bond cleavage step.
447

Part A: Palladium-Catalyzed C–H Bond Functionalization Part B: Studies Toward the Synthesis of Ginkgolide C using Gold(I) Catalysis

Lapointe, David 26 January 2012 (has links)
The field of metal-catalyzed C–H bond functionalizations is an incredibly vibrant and spans beyond the formations of biaryl motifs. The introduction chapter will cover the mechanistic aspects of the C–H bond functionalization with metal-carboxylate complexes. The mechanistic facets of this reaction will be the main conducting line between the different sections and chapters of the first part of this thesis. In the second chapter, will be described additives that can readily promoted C–H bond arylation of poorly reactive substrates. More specifically, we will revisit the intramolecular direct arylation reaction we will demonstrate the effect of pivalic acid as a co-catalyst by developing milder reaction conditions. In the third chapter we be described experimental and computational studies which suggested that the a single pathway might be involved in the palladium-catalyzed C–H bond functionalization of a wide range of (hetero)arene. Following this we will describe a general set of conditions for the direct arylation of wide range of heteroarenes. Also, we will present two different strategies to selectively and predictably arylate substrates containing multiple functionalizable C–H bonds. In the fourth chapter will be presented our efforts toward the development of new C–H bond functionalization methods in which we could apply our knowledge on the C–H bond cleavage and apply it to the formation of new scaffolds. The development of two new palladium-catalyzed methods were also described. In the fifth chapter, our effort toward the development of ligands to specifically promoted C–H bond cleavage will be presented. In the sixth chapter will be presented the latest results on the study of the mechanism of the C–H bond cleavage combining experimental and computational studies. In part B of this thesis will be presented our strategy toward the total synthesis of ginkgolide C that included two gold(I)-catalyzed reactions as key steps in the preparation of the spiro[4.4]nonane core of this natural product. The first studies on the feasibility of the key steps of the synthesis will be described.
448

Hydroconversion de la tétraline sur catalyseurs à base d'iridium supporté sur silice-alumine

Nassreddine, Salim 27 October 2010 (has links) (PDF)
L'ouverture sélective de cycles aromatiques sur catalyseurs bifonctionnels peut en principe aboutir à une augmentation de l'indice de cétane des gazoles. Dans ce travail, nous nous sommes concentrés sur l'iridium supporté sur silice-alumine amorphe (ASA) comme catalyseur d'hydroconversion de la tétraline en présence de H2S à 250-350 °C dans un microréacteur continu sous pression (4 MPa). Une étude détaillée par analyse thermique et diffraction X in situ du processus de décomposition du précurseur acétylacétonate d'iridium a permis d'optimiser l'étape d'activation. Unesimple réduction sous H2 à 350 °C aboutit à des nanoparticules Ir finement dispersées (taille 1.4 ± 0.2nm). Le catalyseur Ir/ASA est stable et résiste à l'empoisonnement par le soufre, contrairement à Ir/SiO2 et Ir/Al2O3. Les principaux produits d'hydroconversion de la tétraline sont les produits d'hydrogénation (décalines) et les produits d'ouverture et de contraction de cycle (POCC). L'analyse par chromatographie en phase gazeuse bidimensionnelle (GC��GC-MS) montre que les POCC se répartissent en produits d'ouverture saturés et aromatiques, minoritaires, et en produits de contraction saturés et aromatiques, majoritaires. Les performances catalytiques de Ir/ASA ont pu être modifiéesvia des effets de support, d'alliage et de taille. Pour une composition Si:Al d'environ 0,5, l'acidité de Brönsted du support est maximale, ce qui conduit à une activité totale et une sélectivité en POCC maximales. D'autre part, l'activité augmente par ajout de palladium, et la sélectivité en POCC est maximale pour la composition Ir-Pd intermédiaire. Les analyses par TEM-EDX montrent que la teneur en Pd des nanoparticules augmente avec leur taille. Enfin, la sélectivité en POCC croîtconsidérablement avec la taille des particules, qui a été ajustée entre 2 et 8 nm par frittage thermiqueen atmosphère humide. Cela s'explique par une diminution du rapport entre les quantités de sitesmétalliques et de sites acides de Brönsted dans le cadre d'un mécanisme bifonctionnel.
449

Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained Alkenes

Thansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate. The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines. In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones. Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.
450

Synthesis of Highly Functionalized Tetrahydroisoquinolines by a Palladium-catalyzed Domino ortho-Alkylation/Heck Reaction Sequence and Diastereoselective Aryne Diels-Alder Reactions

Turcotte-Savard, Marc-Olivier 15 July 2009 (has links)
We report a palladium-catalyzed, norbornene mediated synthesis of tetrahydroisoquinolines via a domino ortho-alkylation/Heck reaction sequence. The desired products are obtained in moderate to excellent yields starting from readily available aryl iodides. The reaction conditions can be extended to the formation of tetrahydroisoquinolinones and tetrahydrobenzo[c]azepines. The reaction allows for sequential intermolecular and intramolecular ortho-alkylations. However, the product yields are higher with ortho-blocked aryl iodides, which simplify the domino process to one intramolecular ortho-alkylation and a Heck reaction. The Lautens group has previously reported diastereoselective aryne Diels-Alder reactions of benzyne with dienes supporting a chiral auxiliary at its terminal carbon. In an effort to extend this work and allow access to a wider variety of 1,4-dihydronaphthalenes, we attempted the synthesis of dienes supporting a chiral auxiliary at a central carbon. Chiral pyridyne precursors were also synthesized, in an attempt to vary the source of chirality in diastereoselective cycloadditions.

Page generated in 0.0228 seconds