• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 123
  • 29
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 343
  • 100
  • 44
  • 43
  • 42
  • 40
  • 40
  • 38
  • 36
  • 32
  • 31
  • 30
  • 30
  • 29
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Implications of land-use change and pasture management on soil microbial function and structure in the mountain rainforest region of southern Ecuador

Potthast, Karin 10 April 2013 (has links)
In the present thesis, implications of pasture establishment, fertilization and abandonment on soil C and nutrient dynamics were investigated for the mountain rainforest region of southern Ecuador. Over the past decades the natural forest of the study area has been threatened by conversion to cattle pastures. However, the soil fertility of these extensively grazed pastures (active pastures) declines continuously during pasture use. The invasion of bracken fern (Pteridium arachnoideum) leads to pasture abandonment when bracken becomes dominant. In order to reveal the mechanisms behind the deterioration of soil fertility, biotic and abiotic soil properties and their interaction were analyzed along a land‐use gradient (natural forest – active pasture – abandoned pasture). The ecosystem disturbance of the mountain rainforest through pasture use changed the microbial function and structure, and affected soil CO2‐C fluxes. Annually, 2 Mg soil CO2‐C ha‐1 were additionally emitted from the pasture land. This acceleration in soil respiration rates was related to accelerated rates of microbial C mineralization and fine‐root respiration. The high‐quality, N‐rich above‐ and belowground residues of the pasture grass (S. sphacelata, C4‐plant), especially the huge fine‐root biomass, provided a high C and N availability for soil microbes. Compared to the forest, increased soil pH and accelerated base saturation were further factors beneficial for soil microbial growth and metabolism of the upper mineral soil at active pastures. Three times higher amounts of microbial biomass C and a significant shift in the microbial community structure towards a higher relative abundance of Gram(‐)‐ bacteria and fungi were observed. Long‐term pasture use and the invasion of bracken (C3‐plant) diminished beneficial effects for microbes, causing a significant decrease in the C, net, and gross N mineralization rates as well as a two‐third reduction in the microbial biomass. A preferential substrate utilization of grass‐derived C4 by the soil microbes resulted in a rapid decline of the C4‐pool. As a consequence, the less available C3‐pool from bracken and former forest increased its dominance in the SOC‐pool, further decreasing pasture productivity and finally causing pasture abandonment. The lower quality and quantity of above‐ and belowground residues of the bracken (high lignin content, C/N) resulted in resource‐limited conditions that influenced the microbial function to greater extent than their structure. The microbial structure seemed to be sensitive mainly to soil pH along the land‐use gradient. Thus, a disconnection between microbial structure and function was identified. Fertilization experiments were conducted both in the lab and in the field to evaluate the impact of urea and/or rock phosphate amendment on SOM dynamics and on pasture productivity of active pastures. After combined fertilization the pasture yield was most efficiently increased by 2 Mg ha−1 a−1, indicating a NP‐limitation of grass growth. Furthermore, the fodder quality was improved by a higher content of P and Ca in the grass biomass. The microorganisms of the active pasture soil responded with an adaptation of their structure to the increased substrate availability in the short term, but did not change their initial functions in the long term. After urea/ rock phosphate addition a significant increase in the relative fungal abundance was detected, but neither a microbial limitation of energy nor of N or P was observed. However, urea addition accelerated gaseous losses of soil CO2‐C in the short term. In the study area, pronounced alterations in ecosystem functioning due to land‐use changes were detected, especially in soil C and N cycling rates. For a sustainable land‐use in this region it is crucial to prevent pasture degradation and to rehabilitate degraded pastures in order to protect the prevailing mountain rainforest ecosystem. It is of crucial importance for active pasture soils to maintain or even increase resource availability, being one indicator of soil fertility. In this context, the soil organic matter has to be retained in the long‐term to maintain high microbial activity and biomass, and thus pasture productivity. A moderate fertilization with urea and rock phosphate can be a first step to provide continuous nutrient supply for grass growth and to strengthen livestock health through increased fodder quality. However, the risk of further additional emissions of soil CO2‐C due to increased loads of urea fertilizer application has to be kept in mind. Overall, for the establishment of a sustainable land‐use management the control of bracken invasion and an adjusted nutrient management are needed. Further investigations on the reduction of soil nutrient losses and increased nutrient use efficiencies of plants, such as combined planting with legumes or the usage of cultivars with special nutrient acquisition strategies, should be in the focus of future work.:Contents Acknowledgement I Table of content III List of Tables V List of Figures VI Abbreviations VII Summary (English/German/Spanish) .................................................... 1 1 Introduction ................................................................................... 6 1.1 Impact of land‐use changes on C and nutrient dynamics ............... 6 1.1.1 Soil organic carbon and soil CO2 flux 7 1.1.2 The role of soil microbes 8 1.1.3 Plant‐microbe interactions 10 1.1.4 Impact of soil environment on soil microbes 11 1.2 Pasture establishment in the tropics .......................................... 13 1.3 Research area ....................................................................... .... 15 2 Objectives and research questions ......................... ................... 19 2.1 Land‐use change ........................................................................ 19 2.2 Pasture management ............................................................. ... 21 3 Methodology ................................................................................. 22 3.1 Study sites ............................................................................... 22 3.1.1 Land‐use gradient 22 3.1.2 Pasture Fertilization Experiment (FERPAST) 23 3.2 General analyses ....................................................................... 24 3.2.1 Laboratory experiments 25 3.2.2 In situ measurements 26 3.2.3 Statistics 27 4 Results ............................................................................................ 28 4.1 Soil C and nutrient dynamics along a land‐use gradient ............. 28 Potthast, K., Hamer, U., Makeschin, F., 2011. Land‐use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry, 1‐17. 4.2 Impact of pH and ongoing succession on microbial function and structure .......... 29 4.3 Response of soil microbes to bracken‐invasion ........................... 32 Potthast K., Hamer U., Makeschin F. 2010. Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry 42, 56‐64. 4.4 Response of soil microbes and pasture grass to fertilization ........33 Hamer, U., Potthast, K., Makeschin, F., 2009. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador. Applied Soil Ecology 43, 226‐233. Potthast, K., Hamer, U., Makeschin, F., 2012. In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co‐limited by N and P. Applied Soil Ecology 62, 103‐114. 5 Discussion .................................................................................... 34 5.1 Impact of land‐use changes ...................................................... 34 5.1.1 Soil CO2 fluxes 34 5.1.2 Microbial structure and function 34 5.2 Soil fertility loss of pastures ‐reasons and first prevention steps‐ . 37 5.2.1 Litter decay and SOM dynamics 37 5.2.2 Fertilization and SOM dynamics 39 5.3 Conclusions and Perspectives ...................................................... 42 References ..................................................................................... 46 Curriculum vitae......................................................................... 58 / In der vorliegenden Dissertation werden die Auswirkungen der Weideetablierung, ‐düngung sowie des Verlassens von Weiden auf Bodenkohlenstoff‐ und Nährstoffdynamik in einer tropischen Bergregenwaldregion Ecuadors zusammenfassend dargestellt und diskutiert. Der Naturwald des Untersuchungsgebietes ist seit Jahrzehnten durch Brandrodung und die Umwandlung in extensiv genutztes Weideland (aktive Weide) in seinem flächenhaften Bestand bedroht. Als Problem hat sich der Verlust an Fruchtbarkeit der Weideböden während ihrer Bewirtschaftung herausgestellt. Des Weiteren führt die Einwanderung des Tropischen Adlerfarns (Pteridium arachnoideum, C3‐Pflanze) zu einer Reduktion der oberirdischen Grasbiomasse. Nimmt diese Entwicklung überhand, werden die betroffenen Flächen von den Bauern nicht mehr aktiv genutzt, verlassen und neuer Regenwald gerodet. Um mehr über die Mechanismen der Verringerung der Bodenfruchtbarkeit zu erfahren, wurden biotische und abiotische Bodeneigenschaften und deren Interaktion entlang eines Landnutzungsgradienten (Naturwald – aktive Weide – verlassene Weide) untersucht. Die Zerstörung des Bergregenwaldökosystems und die Überführung der gerodeten Flächen zur Weidebewirtschaftung verändert die Funktion und Struktur der Bodenmikroorganismen und beeinflusst den CO2‐C Fluss aus dem Boden. Jährlich werden 2 t CO2‐C ha‐1 zusätzlich vom Weideland emittiert. Diese Erhöhung der Bodenatmungsraten kann mit erhöhten Raten der mikrobiellen C‐Mineralisierung und Feinwurzelatmung in Verbindung gebracht werden. Das Weidegras (S. sphacelata, C4‐Pflanze) liefert C‐ und N‐reiche ober und unterirdische organische Substanz (z.B. durch die Feinwurzelbiomasse) und trägt damit zu einer Erhöhung der C‐ und N‐Verfügbarkeit für die mikroorganismen bei. Darüber hinaus stellen ein höherer pH‐Wert und eine erhöhte Basensättigung im oberen Mineralboden der aktiven Weide günstige Bedingungen für mikrobielles Wachstum und Metabolismus dar. Als Konsequenz sind die Gehalte an mikrobiellem Biomassekohlenstoff um das Dreifache erhöht und die mikrobiellen Gemeinschaftsstrukturen signifikant in Richtung einer höheren relativen Abundanz der Gram(‐)‐Bakterien und Pilze verschoben. Eine längerfristige Weidebewirtschaftung ohne Kompensation von Nährstoffverlusten sowie die Einwanderung des Tropischen Adlerfarnes verschlechterte die Bedingungen für die Mikroorganismen, was zu einem signifikanten Rückgang des SOC, der Netto‐ und Brutto‐N‐Mineralisierungsraten sowie zu einer Halbierung der mikrobiellen Biomasse führt. Eine bevorzugte Substratnutzung von Graskohlenstoff (C4) durch die Mikroorganismen hat einen schnellen Abbau des C4‐Pools zur Folge. Somit dominiert nun der mikrobiell schlechter verfügbare C3‐Pool den Bodenkohlenstoffpool. Dies führt zu einem weiteren Rückgang der Weideproduktivität und schließlich zum Offenlassen der Weide. Die geringere Qualität und Quantität der vom Farn stammenden ober‐ und unterirdischen organischen Substanz (hoher Ligninanteil, weites C/N), führten zu einer Limitierung der Ressourcen für die Mikroorganismen, welche deren Funktionen in größerem Maße beeinflussen als deren Gemeinschaftsstruktur. Im Gegensatz dazu wird entlang des Landnutzungsgradienten die Struktur hauptsächlich durch den pH‐Wert beeinflusst. Daraus folgt, dass Struktur und Funktion der Bodenmikroorganismen voneinander entkoppelt auf Veränderungen reagieren können. Um den Einfluss von Harnstoff‐ und/ oder Rohphosphatdüngung aktiver Weiden auf die Dynamik der organischen Bodensubstanz und auf die Weideproduktivität zu untersuchen, wurden sowohl Labor‐ als auch Feldversuche durchgeführt. Im Feldexperiment wurde gezeigt, dass eine NP‐Limitierung der Grasbiomasseproduktion vorliegt und durch eine geringe NP‐Kombinationsdüngung die oberirdische Phytomasseproduktion um 2 t ha−1 a−1 gesteigert und die Futterqualität durch eine Erhöhung der P‐ und Ca‐ Gehalte verbessert werden kann. Die Mikroorganismen reagierten mit einer Anpassung ihrer Struktur an die kurzzeitig erhöhte Substratverfügbarkeit. Nach Gabe von Harnstoff und/ oder Rohphosphat wurde weder eine N‐ noch eine P‐Limitierung der Bodenmikroorganismen festgestellt, und die mikrobiellen Funktionen wurden langfristig nicht verändert. Dagegen bewirkte die Düngergabe einen erhöhten relativen Anteil der Pilzabundanz. Im Labor sowie im Feld kam es nach Harnstoffdüngung kurzzeitig zu verstärkten gasförmigen Verlusten des Bodenkohlenstoffs. Aufgrund der Landnutzungsänderungen im Untersuchungsgebiet veränderten sich die Ökosystemfunktionen stark, speziell die Boden‐C‐ und Boden‐N‐Umsatzraten. Für eine nachhaltige Landnutzung in der Region, d. h., für den Schutz der noch verbliebenen natürlichen Bergregenwaldflächen, ist es von entscheidender Bedeutung, dass die Weidedegradierung verhindert wird und degradierte Flächen wieder in Nutzung genommen werden. Als entscheidend für die Weideproduktivität hat sich in dieser Studie die Ressourcenverfügbarkeit für Bodenmikroorganismen herausgestellt. Daher ist es sehr wichtig, diese Ressourcenverfügbarkeit in Böden aktiv‐genutzter Weiden zu erhalten oder noch zu erhöhen, denn sie wirkt sich vor allem auf die organische Bodensubstanz und im Wechselspiel damit auf die mikrobielle Biomasse und Aktivität aus. Eine moderate Kombinationsdüngung aus Harnstoff und Rohphosphat ist ein erster Schritt in diese Richtung. Dabei sollte jedoch das Risiko zusätzlicher bodenbürtiger CO2‐C Emissionen in Folge höherer Düngergaben berücksichtigt werden. Für ein nachhaltiges Landnutzungsmanagement sind Maßnahmen gegen die Einwanderung des Adlerfarnes und ein angepasstes Nährstoffmanagement notwendig. Weitere Untersuchungen sollten auf eine Minimierung der Nährstoffverluste und eine erhöhte Nährstoffnutzungseffizienz der Pflanzen fokussiert werden. Weidemischkulturen aus Gräsern mit Leguminosen sowie der Einsatz von Kulturen mit speziellen Nährstoffaneignungsstrategien könnten dabei eine große Rolle spielen und sollten in der Region erprobt werden.:Contents Acknowledgement I Table of content III List of Tables V List of Figures VI Abbreviations VII Summary (English/German/Spanish) .................................................... 1 1 Introduction ................................................................................... 6 1.1 Impact of land‐use changes on C and nutrient dynamics ............... 6 1.1.1 Soil organic carbon and soil CO2 flux 7 1.1.2 The role of soil microbes 8 1.1.3 Plant‐microbe interactions 10 1.1.4 Impact of soil environment on soil microbes 11 1.2 Pasture establishment in the tropics .......................................... 13 1.3 Research area ....................................................................... .... 15 2 Objectives and research questions ......................... ................... 19 2.1 Land‐use change ........................................................................ 19 2.2 Pasture management ............................................................. ... 21 3 Methodology ................................................................................. 22 3.1 Study sites ............................................................................... 22 3.1.1 Land‐use gradient 22 3.1.2 Pasture Fertilization Experiment (FERPAST) 23 3.2 General analyses ....................................................................... 24 3.2.1 Laboratory experiments 25 3.2.2 In situ measurements 26 3.2.3 Statistics 27 4 Results ............................................................................................ 28 4.1 Soil C and nutrient dynamics along a land‐use gradient ............. 28 Potthast, K., Hamer, U., Makeschin, F., 2011. Land‐use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry, 1‐17. 4.2 Impact of pH and ongoing succession on microbial function and structure .......... 29 4.3 Response of soil microbes to bracken‐invasion ........................... 32 Potthast K., Hamer U., Makeschin F. 2010. Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry 42, 56‐64. 4.4 Response of soil microbes and pasture grass to fertilization ........33 Hamer, U., Potthast, K., Makeschin, F., 2009. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador. Applied Soil Ecology 43, 226‐233. Potthast, K., Hamer, U., Makeschin, F., 2012. In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co‐limited by N and P. Applied Soil Ecology 62, 103‐114. 5 Discussion .................................................................................... 34 5.1 Impact of land‐use changes ...................................................... 34 5.1.1 Soil CO2 fluxes 34 5.1.2 Microbial structure and function 34 5.2 Soil fertility loss of pastures ‐reasons and first prevention steps‐ . 37 5.2.1 Litter decay and SOM dynamics 37 5.2.2 Fertilization and SOM dynamics 39 5.3 Conclusions and Perspectives ...................................................... 42 References ..................................................................................... 46 Curriculum vitae......................................................................... 58 / La tesis presentada investiga el impacto del establecimiento de pasto, de su fertilización y de su manejo tradicional (abandono del pastizal) a la dinámica del carbono y de los nutrientes de suelo en la región de los bosques tropicales montañosos en el Sur de Ecuador. Durante las últimas décadas el bosque natural en el área de estudio ha estado amenazada por su conversión a pastizales. Sin embargo, la fertilidad del suelo en pastos de tipo extensivo (pastos activos) decrece frecuentemente durante el uso de los pastos. La invasión de Llashipa (Pteridium arachnoideum) conduce al abandono de los pastos cuando la ésta se vuelve dominante. Con la finalidad de revelar los mecanismos detrás de esta disminución de la fertilidad de suelo, se analizaron las propiedades bióticas y abióticas del suelo y sus interacciones, a lo largo de una gradiente del uso de la tierra (bosque natural —pasto activo — pastos abandonados). La perturbación del ecosistema de bosque tropical montañoso por su cambio de uso, mediante el establecimiento de pastizales, ha alterado la función y la estructura de los microorganismos y ha afectado el flujo de CO2‐C del suelo. Cada año 2 Mg CO2‐C ha‐1 fueron emitidas adicionalmente por el establecimiento de pastos. Esta aceleración en la tasa de respiración del suelo está relacionada con el aumento de las tasas de mineralización microbiana de carbono y de la respiración de las raíces. La alta calidad y abundancia de N de los residuos orgánicos del suelo con pasto Mequeron (S. sphacelata, C4‐planta), especialmente debido a la gran biomasa de las raíces finas, ofrecen una disponibilidad alta de C y N para los microorganismos. En comparación con el bosque natural, el aumento del pH y la saturación bases acelerada fueron condiciones más favorables para el crecimiento microbiano y para el metabolismo microbiano en el parte superior del suelo mineral en pastos activos. La cantidad de C de la biomasa de los microorganismos fue tres veces mayor que la del bosque y se ha observado un cambio significativo de la estructura de la comunidad microbiana, en donde la abundancia relativa de los hongos y de las bacterias Gram(‐) ha aumentado. El uso de pasto a largo plazo y la invasión de Llashipa (C3‐planta) han reducido los efectos benéficos para los microorganismos, que resultaron en una reducción significativa de las tasas de la mineralización de C y N, y en una reducción en dos tercios de la biomasa microbiana. El uso preferencial de los microorganismos por sustrato de pasto C4 han resultado en una rápida disminución de la reserva de C4. Como consecuencia, la menor disponibilidad de la reserva de C3 de las plantas de Llashipa y de la cobertura anterior de bosque ha incrementado su dominancia en la reserva de materia orgánica del suelo. Eso resulta, en una mayor disminución de la productividad de los pastos, conduciendo finalmente al abandono de los campos de pastos. La menor calidad y cantidad de los residuos acumulados sobre y bajo el suelo provenientes de la Llashipa han dado como resultado un sustrato de limitadas condiciones que están afectando más a las funciones microbiales antes que a su estructura. La estructura microbiana parece ser más sensible al pH del suelo a largo de la gradiente del uso de la tierra; de manera que se ha identificado una desconexión entre la estructura y función microbial. Experimentos de fertilización en laboratorio y en campo han sido realizados para evaluar el impacto de la aplicación de enmiendas (urea y/o roca fosfórica) a la dinámica de la materia orgánica y a la productividad de los pastos activos. El resultado del experimento de campo ha demostrado que la fertilización combinada es más efectiva, mostrando un aumento en la producción de biomasa de 2 Mg ha−1 a−1, lo que indica una limitación de N y P para el crecimiento del pasto. Además, la calidad de forraje se mostró incrementada ya que el contenido de P y de Ca han aumentado significativamente. Los microorganismos del suelo en el pasto activo han respondido a corto plazo con una adaptación de su estructura ante la disponibilidad de sustrato, pero no han mostrado un cambio de sus funciones iniciales a largo plazo. Después de la aplicación de urea y de la roca fosfórica, se detectó un incremento significativo en la abundancia de los hongos, pero tampoco se observó una limitación de energía microbial ni de N o P. Sin embargo, la aplicación de urea ha aumentado la pérdida gaseosa de CO2‐C del suelo a corto plazo. Debido al cambio de uso de la tierra en la área de investigación, se ha detectado una alteración notable de la función del ecosistema, especialmente en el ciclo de C y N de suelo. Para un uso sostenible de la tierra en esta región, es crucial el prevenir la degradación de pastos y rehabilitar aquellos degradados. En el suelo de pastos activos es de gran importancia el mantener o aún mejor el aumentar la disponibilidad del sustrato, que es uno de los indicadores de la fertilidad del suelo. En este contexto, la materia orgánica se debe ser retenida a largo plazo para mantener la actividad y biomasa microbiana alta y por ende la productividad de pasto. Una moderada fertilización con urea y roca fosfórica puede ser un primer paso para proveer un continuo suministro de nutrientes por el crecimiento del pasto y para reforzar la sanidad pecuaria por medio de un forraje de mayor calidad. Sin embargo, el riesgo de emisiones adicionales de CO2‐C del suelo debido a una aplicación más alta de urea debe tenerse en cuenta. Se puede concluir que para un manejo sostenible del uso de la tierra, tanto el control de la invasión de Llashipa y como un suministro adecuado de nutrientes son necesarios. Adicionalmente se podría decir que es necesario profundizar el estudio de la reducción de las pérdidas de los nutrientes de suelo y de la eficiencia del uso de los nutrientes en las plantas, así como las asociaciones de pastos con leguminosas o el uso de cultivos de absorción selectiva de nutrientes, que serían estrategias importantes para el futuro.:Contents Acknowledgement I Table of content III List of Tables V List of Figures VI Abbreviations VII Summary (English/German/Spanish) .................................................... 1 1 Introduction ................................................................................... 6 1.1 Impact of land‐use changes on C and nutrient dynamics ............... 6 1.1.1 Soil organic carbon and soil CO2 flux 7 1.1.2 The role of soil microbes 8 1.1.3 Plant‐microbe interactions 10 1.1.4 Impact of soil environment on soil microbes 11 1.2 Pasture establishment in the tropics .......................................... 13 1.3 Research area ....................................................................... .... 15 2 Objectives and research questions ......................... ................... 19 2.1 Land‐use change ........................................................................ 19 2.2 Pasture management ............................................................. ... 21 3 Methodology ................................................................................. 22 3.1 Study sites ............................................................................... 22 3.1.1 Land‐use gradient 22 3.1.2 Pasture Fertilization Experiment (FERPAST) 23 3.2 General analyses ....................................................................... 24 3.2.1 Laboratory experiments 25 3.2.2 In situ measurements 26 3.2.3 Statistics 27 4 Results ............................................................................................ 28 4.1 Soil C and nutrient dynamics along a land‐use gradient ............. 28 Potthast, K., Hamer, U., Makeschin, F., 2011. Land‐use change in a tropical mountain rainforest region of southern Ecuador affects soil microorganisms and nutrient cycling. Biogeochemistry, 1‐17. 4.2 Impact of pH and ongoing succession on microbial function and structure .......... 29 4.3 Response of soil microbes to bracken‐invasion ........................... 32 Potthast K., Hamer U., Makeschin F. 2010. Impact of litter quality on mineralization processes in managed and abandoned pasture soils in Southern Ecuador. Soil Biology and Biochemistry 42, 56‐64. 4.4 Response of soil microbes and pasture grass to fertilization ........33 Hamer, U., Potthast, K., Makeschin, F., 2009. Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador. Applied Soil Ecology 43, 226‐233. Potthast, K., Hamer, U., Makeschin, F., 2012. In an Ecuadorian pasture soil the growth of Setaria sphacelata, but not of soil microorganisms, is co‐limited by N and P. Applied Soil Ecology 62, 103‐114. 5 Discussion .................................................................................... 34 5.1 Impact of land‐use changes ...................................................... 34 5.1.1 Soil CO2 fluxes 34 5.1.2 Microbial structure and function 34 5.2 Soil fertility loss of pastures ‐reasons and first prevention steps‐ . 37 5.2.1 Litter decay and SOM dynamics 37 5.2.2 Fertilization and SOM dynamics 39 5.3 Conclusions and Perspectives ...................................................... 42 References ..................................................................................... 46 Curriculum vitae......................................................................... 58
342

Landsat and Sentinel-2 based analysis of land use in the Brazilian Amazon: The agricultural frontier of Novo Progresso

Jakimow, Benjamin 27 February 2023 (has links)
Der Amazonas befindet sich im Wandel. Seine Regenwälder sind zunehmend durch die expandierende Landwirtschaft bedroht. Brandrodungen und die meist extensive Weidewirtschaft verantworten großflächige Ökosystemschäden und hohe Treibhausgasemissionen. Erdbeobachtungssysteme wie die Landsat und Sentinel-2 Satelliten ermöglichen eine großflächige Analyse dieser Entwicklungen und sind unerlässlich zur Evaluierung von Maßnahmen zum Schutze des Amazonas. Allerdings sind in den Kerntropen Fernerkundungsanalysen aufgrund des Bewölkungsgrades sehr herausfordernd. Diese Arbeit zielt daher auf eine verbesserte Erkennung landwirtschaftlicher Prozesse, wie sie an Entwaldungsfronten und speziell in der Region Novo Progresso, Pará, Brasilien, typisch sind. Dazu wurde zunächst der EO Time Series Explorer entwickelt, um verschiedene Dimensionen dichter Multisensorzeitserien interaktiv zur Erstellung von Referenzdaten in Wert zu setzen. Mit den Clear Observation Sequences (COS) wurde darauf basierend ein neuer Ansatz zur Erfassung hoch-dynamischer landwirtschaftlicher Prozesse entwickelt, etwa Feuer mit geringer Brandlast oder Bodenbearbeitungsmaßnahmen. Darauf aufbauend wurde schließlich der Landnutzungswandel in der Region Novo Progresso zwischen 2014 und 2020 untersucht. Die Ergebnisse zeigen einen alarmierenden Anstieg der Entwaldung und eine Zunahme landwirtschaftlicher Feuer seit der Präsidentschaft von Jair Bolsonaro. Differenziert nach Landnutzungszonen und Betriebsgrößen wird deutlich, dass Schutzgebiete weniger wirksam sind und insbesondere größere Landwirtschaftsbetriebe die Entwaldung vorantreiben. Diese Arbeit zeigt den hohen Wert einer synergetischen Nutzung unterschiedlicher Satellitenzeitserien für die fernerkundliche Analyse landwirtschaftlicher Prozesse. Eine weitere Verdichtung der Zeitserien mit räumlich und spektral höherauflösenden Sensoren bietet weiteres Verbesserungspotential bei der Beschreibung landwirtschaftlicher Dynamiken. / The Amazon is in transition, and its rainforests are increasingly threatened by agricultural expansion. A slash-and-burn agriculture and mostly extensive cattle grazing are responsible for large-scale ecosystem damage and high levels of greenhouse gas emission. Earth observation systems such as the Landsat and Sentinel-2 satellites enable large-scale analysis of these developments and are essential for evaluating measures to protect the Amazon. However, cloud cover makes remote sensing analysis challenging in the core tropics. The present work aims to improve the detection of agricultural processes typical of deforestation frontiers, focusing specifically on the Novo Progresso region, Pará, Brazil. To that end, the EO Time Series Explorer was developed to interactively visualize the different dimensions of dense multi-sensor time series and to create reference data. Based on this software tool, the Clear Observation Sequences (COS) approach was developed to capture highly dynamic agricultural processes such as low-load fires or tillage operations. Finally, the investigation of land-use changes in the Novo Progresso region between 2014 and 2020 shows an alarming increase in deforestation and agricultural fires since Jair Bolsonaro’s accession to the presidency. Analysis by land-use zone and property size shows that protected areas have become less effective and that larger properties are driving deforestation. This work demonstrates the value of synergistic use of satellite time series for remote sensing analysis of agricultural processes. Further densification of time series using higher spatial and spectral resolution sensors promises to further improve the description of agricultural dynamics.
343

Processos erosivos lineares nas bacias dos Rios Claro e dos Bois, afluentes do Rio Araguaia no Estado de Goiás: relações com a cobertura vegetal e uso da terra / Linear erosion processes in the basins of the rivers course and Bois, tributaries of the Rio Araguaia in Goiás State: relationships with vegetation cover and land use

BARBALHO, Maria Gonçalves da Silva 19 August 2010 (has links)
Made available in DSpace on 2014-07-29T12:05:36Z (GMT). No. of bitstreams: 1 Maria Goncalves da Silva.pdf: 7545290 bytes, checksum: d2d0b32033e574f5829cacf879cb1d63 (MD5) Previous issue date: 2010-08-19 / The pattern of land use and occupation of the Cerrado associated with the expansion of the agricultural frontier, in the last 40 years, has been interpreted as causing environmental impacts observed him during this period, especially those related to intensive deforestation and indiscriminate use of areas with soils with low or null agricultural capability, although capable of extensive pastures. The Erosion processes have been described as the most significant, positioned after the remarkable loss of biodiversity, the most important and extensive in area. The present thesis analyzes the relationship between the land use valued at historical series started in the decade of 1975, agricultural suitability of land use pattern and the erosion and silting sites of the two combined basins for purposes of this study, called basins of the rivers Claro and Bois, tributaries of the upper Araguaia river in the state of Goiás. This area was considered in previous studies as the most affected by deforestation among the five sub-basins that make up the upper Araguaia river basin. The research was based an integrated analysis of the physical environment and biota components of the focus area, with base on remote sensing and GIS and pedotransfer criteria. The results are presented as scientific papers and reveal that the most intensive phase of deforestation occurred in the 1980s, when the Forest Formations were most penalized originally, followed by the Savanna Formations, that the conversion occurred in favor of extensive pastures, for which the area has good suitability soil and relief associates; that the numerous of linear erosion impacts, 395 linear erosion features placed in degraded pastures are concentrated in these areas, which predominate low discrepancies between suitability and actual use. As evidenced in the spatial analysis, it is confirmed the presence of 395 linear erosion features associated with degraded pastures. It is concluded that the area supports the pattern of initial occupation of the Cerrado by its conversion to pasture and that environmental impacts arising from the management of them more than this type of use. / O padrão de uso e ocupação das terras do Cerrado associado à expansão de fronteira agrícola, nos últimos 40 anos, tem sido interpretado como o causador dos impactos ambientais nele constatados nesse período, sobretudo os relativos ao desmatamento intensivo e indiscriminado de áreas com solos com baixa ou nula aptidão agrícola, ainda que aptos a pastagem extensiva. Os processos erosivos têm sido apontados como os mais significativos, posicionados após a perda notável da biodiversidade, o mais importante e extenso em área. A presente tese analisa a relação entre o uso do solo avaliado em série histórica iniciada na década de 1975, a aptidão agrícola das terras e os focos erosivos e de assoreamento das duas bacias conjugadas para fins deste trabalho, denominadas bacias dos rios Claro e dos Bois, afluentes do alto rio Araguaia, no Estado de Goiás. Essa área foi considerada em trabalhos anteriores como a mais afetada pelos desmatamentos dentre as cinco principais sub-bacias que compõem a alta bacia do rio Araguaia. A pesquisa baseou-se na análise integrada dos componentes do meio físico e biótico da área focada, com base em sensoriamento remoto e geoprocessamento e em pedotransferência. Os resultados são apresentados na forma de artigos científicos e revelam que a fase mais intensiva do desmatamento deu-se na década de 1980, que as Formações Florestais foram inicialmente as mais penalizadas, seguindo-se as Formações Savânicas; que a conversão deu-se em favor das pastagens extensivas, para o que a área apresenta boa aptidão dos solos e relevo associados; que os numerosos impactos erosivos lineares concentram-se nessas áreas, ainda que seja onde predominam discrepâncias baixas entre aptidão e o uso atual. Como evidenciado na análise espacial, constatou-se a presença de 395 focos erosivos lineares associados às áreas de pastagens degradadas. Conclui-se que a área corrobora o padrão de ocupação inicial do Cerrado por sua conversão em pastagem e que os impactos ambientais derivam mais do manejo das mesmas do que desse tipo de uso.

Page generated in 0.033 seconds