• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 9
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etudes in silico et expérimentale de la DXR & synthèse de D- et L-GAP énantiomériquement purs / In silico and experimental studies of the DXR & enantiomerically pur D- and L-GAP synthesis

Krebs, Fanny 21 December 2016 (has links)
La thèse porte sur l’étude des 2 premières enzymes de la voie du MEP: la DXS et DXR. La voie du MEP conduit à la biosynthèse des isoprénoïdes chez la plupart des bactéries, dont des pathogènes. Etant absente chez l’homme, les enzymes de cette voie cible idéale pour la recherche de nouveaux antimicrobiens. L’objectif principal était d’améliorer le développement de nouveaux antimicrobiens. Nous avons utilisé des outils computationnels : méthodes de docking et de mécanique moléculaire couplée à la méthode MM/PBSA. Nous avons identifié les résidus contribuant significativement à la fixation d’un ligand dans le site actif de la DXR. Ces résultats ont été utilisés lors de la conception de nouveaux candidats inhibiteurs de type bisubstrat, biligand et difluoro phosphonate, dont 2 ont pu être synthétisés. Nous avons également développé une méthode de synthèse donnant accès au L- et D-GAP énantiomeriquement purs, dans le but d’étudier l’énantiospécificité de la DXS face à son substrat D-GAP. / This thesis concerns the study of the 2 first enzymes of the MEP pathway: DXS and DXR. The MEP pathway permits the biosynthesis of isoprénoïdes in most bacteria, including pathogenic one. As it is not present in human, enzymes of MEP pathway are effective targets in the research of new antimicrobial drugs. The objective was to advance the development of new antimicrobiotic compounds. We used computational tools: molecular docking and molecular dynamics simulations coupled with an MM/PBSA approach. We were able to identify residues that contribute significantly to the ligand binding in the DXR active site. These results were used to guide the conception of new inhibitor models, such as bisubstrates, biligands and α,α-difluoro phosphonates, two of which were synthetized. We also developed a synthesis method to obtain L- and D-GAP as enantiomerically pure molecules. The goal was to study the enantiospecificity of DXS to its substrate, D-GAP.
2

Mélanges de polymères biodégradables immiscibles : influence de la morphologie sur le contrôle de la libération de substances actives ou modèles / Immiscible biodegradable polymer blends : influence of the morphology on the control of the release of active substances or models

Khalil, Fadi 09 July 2015 (has links)
Dans le but de développer des matériaux actifs antimicrobiens biodégradables à libération contrôlée, des mélanges de deux polymères biodégradables incompatibles ont été mis en oeuvre par les voies classiques de transformation des matériaux plastiques (extrusion). L'originalité de ces mélanges réside dans la recherche d'une stratégie de contrôle de la libération d'espèces actives incorporées dans l'une des phases du système et générée par la tortuosité/disponibilité de chemins de diffusion sélectifs obtenue en jouant sur les proportions relatives des 2 polymères en présence. Les systèmes binaires étudiés sont : [amidon de maïs plastifié, PLS et poly(butylène succinate-co-adipate) ou PBSA] et un système référence [(poly(oxyethylène) PEO et PBSA]. Dans ces mélanges, les polymères polaires (PLS ou PEO) jouent le rôle de matrice hôte pour solubiliser les migrants actifs ou modèles, souvent polaires et le polymère semipolaire,le PBSA, compense la faiblesse des propriétés mécaniques et barrières à l'eau de la phase amylacée et /ou hydrophile tout en présentant une température de fusion basse (85°C) compatible avec une stratégie à plus long terme d'incorporation d'actifs peu thermostables. Les systèmes obtenus sont caractérisés afin de corréler les différentes morphologies obtenues en jouant sur la composition des mélanges (phase dispersées dans une matrice continue, ou continuité partielle ou totale, systèmes pseudo-multicouches) aux phénomènes de transport de diverses molécules. Les caractérisations effectuées ont alors pour objectif d'élucider les morphologies obtenues par i) extraction sélective par voie solvant (ou hydrolyse) enrichie par des observations microscopiques ii) par utilisation de sondes gazeuses via les propriétés de transport de vapeur d'eau (qui privilégiera les chemins offerts par la matrice polaire) ou de l'oxygène (qui, lui, privilégiera les chemins de diffusions offerts par le PBSA) iii) par la réalisation des isothermes et cinétiques de sorption d'eau et enfin iv) par l'étude de la libération dans l'eau de migrants actifs ou modèles préalablement incorporés dans la phase polaire (fluorescéinate de sodium, acides organiques, glycine, di-glycine). Il a ainsi pu être montré pour les mélanges PLS/PBSA que les phénomènes de diffusion sont contrôlés par la tortuosité générée par la présence de PBSA dans le cas du relargage de la fluorescéine et par l'hydratation limitée de la phase polaire en présence de fortes teneurs en PBSA dans le mélange pour les phénomènes de sorption d'eau. Ainsi, la diffusion de la fluorescéine, par exemple, est nettement plus influencée que celle de l'eau par la tortuosité (elle-même gouvernée par la composition du mélange), très probablement en raison de sa plus grande masse moléculaire. Pour les mélanges PEO/PBSA, des comportements distincts ont été mis en évidence selon la composition des mélanges. Pour les mélanges à faibles teneurs ou teneurs intermédiaires en PBSA, un transport rapide se produit principalement via la dissolution du PEO. La morphologie ne semble pas influencer les cinétiques de libération. Pour des teneurs élevées en PBSA, la cinétique de libération est cette fois dépendante de la morphologie présente un temps de latence caractéristique d'une cinétique de perméation (libération proportionnelle au temps). En conclusion, les matériaux élaborés par les voies migrants polaires tels que des conservateurs pour élaborer par exemple des emballages actifs antimicrobiens / In order to develop biodegradable and active materials s, blends of two incompatible biodegradable polymers have been implemented by conventiona plastic material processing (extrusion). The originality of these blends lies in the search for a strategy to control the release of active species included in one of the phases of the system. Therefore, the tortuosity / availability of selective diffusion paths obtained by varying the relative proportions of the two polymers involved will be exploited. Studied binary systems consist of: [plasticized corn starch, PLS and poly (butylene succinate-co-adipate) or PBSA] and a reference system [(poly (oxyethylene) PEO and PBSA]. In these blends, polar polymers (PLS or PEO) play the role of host matrix to solubilize the active migrants or model molecules which are often polar, and the semi-polar polymer (PBSA) compensates for the weakness of the mechanical properties of the starchy and / or hydrophilic phase while having a low melting temperature (85 ° C) consistent with a longer-term strategy of incorporation of thermostable active molecules such as lysozyme or nisin. The resulting systems were characterized to correlate the different morphologies obtained by varying the composition of the blends (dispersed phase in a continuous matrix, partial or total continuity, or pseudo-layer systems) to the transport phenomena of various molecules. The performed characterizations aim to elucidate the morphologies by i) selective solvent extraction method (or hydrolysis) enriched by microscopical observations ii) using gaseous probes via the determination of water vapor transport properties (water will favor the paths provided by the polar matrix) or oxygen transport properties (O2 will favor the diffusion paths provided by the PBSA matrix) iii) by determining water sorption isotherms and kinetics and finally iv) by the study of the release in water of active or model migrants previously incorporated in the polar phase (sodium fluoresceinate, organic acids, glycine, diglycine). It has been observed that the diffusion phenomena in PLS / PBSA blends are controlled by the tortuosity generated by the presence of PBS and by the limited hydration of the polar phase at high PBSA contents in the blends for water sorption phenomena. Thus, the diffusion of fluorescein, for example, is much more influenced by the tortuosity (itself governed by the composition of the blends) than that of water, which is likely due to its higher molecular weight. For PEO / PBSA blends, distinct behaviors were observed according to the blends composition. For the blends with low or intermediate content of PBSA, rapid transport occurs mainly via the dissolution of the PEO. The morphology did not seem to influence the release kinetics. For high contents of PBSA, the release kinetics were dependent on the morphology and a time lag which is characteristic of permeation kinetics (release proportional to time) appeared. In conclusion, the multiphasic materials prepared by plastic processing look promising for the controlled release of polar migrants such as food preservatives to develop antimicrobial active packaging
3

Développement de films polymères nanostructurés à hautes propriétés barrières. / Development of nanostructured polymer films with high barrier properties

Messin, Tiphaine 27 November 2017 (has links)
L’objectif premier de ce travail de thèse concerne la réalisation et la caractérisation de différents films multicouches afin d’étudier l’impact du phénomène de confinement des couches de polymères sur les propriétés barrières du polymère confiné et du film multicouche. Des films multicouches constitué de polycarbonate (PC) et de poly(m-xylène adipamide) (MXD6), polymères actuellement utilisés par les industries de l’emballage, ont tout d’abord été étudiés. Puis, dans un second temps, des films multicouches composés de polyesters biodégradables, à savoir des films multicouches d’acide polylactique (PLA) avec comme polymère confiné soit du poly(butylène succinate-co-butylène adipate) (PBSA) ou du poly(butylène succinate) (PBS), ont été élaborés.Une fois la structure multicouche obtenue et avoir confirmé l’amélioration de l’effet barrière grâce au phénomène de confinement, le deuxième objectif a été d’incorporer des charges lamellaires de type montmorillonite (Cloisite® 30B) dans la couche de polymère confiné dans le but d’accroitre davantage l’effet barrière du film multicouche sélectionné.Pour comprendre l’amélioration des propriétés barrières aux gaz et à l’eau des films multicouches élaborés, une analyse de la microstructure par DSC et DRX ainsi qu’une analyse des propriétés mécaniques ont été menées conjointement avec une observation par microscopie. / The objective of the work was the elaboration and the characterization of different multilayer films in order to study the impact of the confinement effect of the polymer layers on the barrier properties. Multilayer films of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6), which are usual polymers for packaging industries, have been studied. Then, multilayer films composed of biodegradable polyesters, such as polylactic acid (PLA) with poly(butylene succinate-co-butylene adipate) (PBSA) or poly(butylene succinate) (PBS) as the confined layers, have been prepared and characterized.For the multilayer structure presenting improved barrier performances due to the confinement effect, the second objective was to insert lamellar clays (Cloisite® 30B) into the confined polymer layers to again improve the barrier properties of the multilayer film. To understand the gas and water barrier improvement of the multilayer films, a microscopic observation of the films and an analysis of the microstructure by DSC and XRD have been performed with mechanical properties measurements.
4

Rationalisation and design of molecular recognition : computational and experimental approaches

Flores Michel, Luz January 2013 (has links)
Molecular recognition is essential to all biological interactions and processes. Knowledge of the structural basis of recognition offers a powerful mechanism for understanding, predicting and controlling the behaviour of biological systems. In this thesis, we present, firstly a computational and crystallographic analysis of molecular recognition in protein-ligand systems; and secondly, progress towards the synthesis of a fluorescent probe for calcium ion recognition. Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kγ, have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders. As a step towards improved understanding of PI3K binding preferences, we examine the basis on which PI3Kγ distinguishes γ-selective inhibitors AS-605240 and AS-604850, with a ~30-fold preference for the former. Interestingly, despite the chemical similarity of the two ligands, the X-ray structures for their PI3Kγ complexes exhibit the molecules in different conformers, s-cis for AS-604850 and s-trans for AS-605240. Here, we re-examine the PI3Kγ/AS-605240 crystallographic data and find that not only is a s-cis conformation possible but in fact it has a much higher occupancy (87%) than the originally modelled s-trans isomer (13%). Subsequently, to account for the isomeric complexities presented by the ligands, we perform 140 ns MD simulations of the four PI3Kγ complexes in explicit solvent: this reveals similar conformational flexibility at the active site for all systems. Yet, the conformations sampled by the s-cis isomers are more consistent with the conformations reported by the X-ray crystal structures. Subsequent energetic analysis was performed incorporating ensemble-averaging and desolvation effects via the Poisson-Boltzmann continuum solvent model. For both inhibitors the s-cis isomers are predicted to be the most favourable conformations. Additionally, the results indicate a preference for AS-605240, as observed experimentally. The molecular basis for this preference is discussed, together with a comparison of molecular mechanical and quantum chemical treatments of the key ligand-Val882 interaction. This study provides structural, dynamical and energetic insights into the subtle basis of molecular recognition by PI3Kγ.Fluorescent probes have evolved into an extremely useful tool for the detection of calcium in biological systems. Benzothiazole derivatives BTC, and its iminocoumarin analogue BTIC, are two low affinity calcium indicators featuring many desirable properties for cellular calcium measurement. In an effort to produce fluorophores that can be chemically conjugated with a screening protein, such as Green Fluorescent Protein (GFP), we aimed to derivatise BTC and BTIC. Two synthetic approaches towards the synthesis of these potential fluorescent probes are outlined.
5

The Mechanism by Which Oximes Reactivate Cholinesterases Inhibited by Organophosphates

Bhavaraju, Manikanthan Hari Naga Venkata 14 December 2013 (has links)
The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are inhibited by nerve agents such as sarin and tabun. In general, the inhibited enzymes are reactivated by bisquaternary ammonium compounds (oximes). The binding free energies of the oximes; 2-PAM, MMB-4, HI-6, and obidoxime bound to human AChE (hAChE) and human BChE (hBChE) inhibited by sarin and tabun and also to the uninhibited enzymes were calculated using various computational methods. Using thermodynamic integration, the binding free energies of all the inhibited and uninhibited systems of MMB-4 and obidoxime were evaluated. The standard binding free energies (dA) were more negative than the experimental values due to limitations of the ff99 forcefield. The RMS error of dA for the inhibited systems of MMB-4 was 2.1 kcal/mol, and for obidoxime systems it was 4.8 kcal/mol with respect to the experimental free energies. The binding enthalpies calculated using MM-GBSA and MM-PBSA methods for 2-PAM, MMB-4, HI-6, and obidoxime systems were negative, except for hBChE-sarin-MMB-4 and hBChE-sarin-obidoxime. For all the systems the TdS values calculated using normal mode analysis were equal to or lower in magnitude than their corresponding binding enthalpies. As a result, the estimated free energies were positive for most of the systems. Clearly, the present algorithms cannot effectively estimate the binding entropies for a protein-ligand system. Met81 has commonly shown favorable interactions, and lysine or arginine exhibited unfavorable interactions with the reactivator in all the systems. Second, the interactions between chloropyrifos-oxon (Cpo) and experimentally tested neutral and monopyridinium oximes bound to the Q192 or R192 polymorphs of human paraoxonase1 (hPON1) were studied. The equilibrated Q192 and R192 hPON1 were structurally different than the crystal structure of recombinant PON1. The neutral oximes have shown more favorable interactions with Cpo in Q192 hPON1 + Cpo system compared to R192 hPON1 + Cpo. Whereas the monopyridinium oximes interacted more affectively with Cpo in R192 hPON1 than Q192 hPON1. The relative deprotonation energy of the monopyridinium oxime was lower than the neutral oxime. Hence, the monopyridinium oxime can hydrolyze an organophosphate at a higher rate than a neutral oxime.
6

Links among Microbial Communities, Soil Properties and Functions: Are Fungi the Sole Players in Decomposition of Bio-Based and Biodegradable Plastic?

Guliyev, Vusal, Tanunchai, Benjaman, Noll, Matthias, Buscot, Francois, Purahong, Witoon, Blagodatskaya, Evgenia 01 November 2023 (has links)
The incomplete degradation of bio-based and biodegradable plastics (BBPs) in soils causes multiple threats to soil quality, human health, and food security. Plastic residuals can interact with soil microbial communities. We aimed to link the structure and enzyme-mediated functional traits of a microbial community composition that were present during poly (butylene succinate-co-butylene adipate (PBSA) decomposition in soil with (PSN) and without (PS) the addition of nitrogen fertilizer ((NH4 )2SO4 ). We identified bacterial (Achromobacter, Luteimonas, Rhodanobacter, and Lysobacter) and fungal (Fusarium, Chaetomium, Clonostachys, Fusicolla, and Acremonium) taxa that were linked to the activities of ß-glucosidase, chitinase, phosphatase, and lipase in plastic-amended soils. Fungal biomass increased by 1.7 and 4 times in PS and PSN treatment, respectively, as compared to nonplastic amended soil. PBSA significantly changed the relationships between soil properties (C: N ratio, TN, and pH) and microbial community structure; however, the relationships between fungal biomass and soil enzyme activities remained constant. PBSA significantly altered the relationship between fungal biomass and acid phosphatase. We demonstrated that although the soil functions related to nutrient cycling were not negatively affected in PSN treatment, potential negative effects are reasoned by the enrichment of plant pathogens. We concluded that in comparison to fungi, the bacteria demonstrated a broader functional spectrum in the BBP degradation process
7

Protein-protein interactions: impact of solvent and effects of fluorination

Samsonov, Sergey 10 December 2009 (has links) (PDF)
Proteins have an indispensable role in the cell. They carry out a wide variety of structural, catalytic and signaling functions in all known biological systems. To perform their biological functions, proteins establish interactions with other bioorganic molecules including other proteins. Therefore, protein-protein interactions is one of the central topics in molecular biology. My thesis is devoted to three different topics in the field of protein-protein interactions. The first one focuses on solvent contribution to protein interfaces as it is an important component of protein complexes. The second topic discloses the structural and functional potential of fluorine's unique properties, which are attractive for protein design and engineering not feasible within the scope of canonical amino acids. The last part of this thesis is a study of the impact of charged amino acid residues within the hydrophobic interface of a coiled-coil system, which is one of the well-established model systems for protein-protein interactions studies. I. The majority of proteins interact in vivo in solution, thus studies of solvent impact on protein-protein interactions could be crucial for understanding many processes in the cell. However, though solvent is known to be very important for protein-protein interactions in terms of structure, dynamics and energetics, its effects are often disregarded in computational studies because a detailed solvent description requires complex and computationally demanding approaches. As a consequence, many protein residues, which establish water-mediated interactions, are neither considered in an interface definition. In the previous work carried out in our group the protein interfaces database (SCOWLP) has been developed. This database takes into account interfacial solvent and based on this classifies all interfacial protein residues of the PDB into three classes based on their interacting properties: dry (direct interaction), dual (direct and water-mediated interactions), and wet spots (residues interacting only through one water molecule). To define an interaction SCOWLP considers a donor–acceptor distance for hydrogen bonds of 3.2 Å, for salt bridges of 4 Å, and for van der Waals contacts the sum of the van der Waals radii of the interacting atoms. In previous studies of the group, statistical analysis of a non-redundant protein structure dataset showed that 40.1% of the interfacial residues participate in water-mediated interactions, and that 14.5% of the total residues in interfaces are wet spots. Moreover, wet spots have been shown to display similar characteristics to residues contacting water molecules in cores or cavities of proteins. The goals of this part of the thesis were: 1. to characterize the impact of solvent in protein-protein interactions 2. to elucidate possible effects of solvent inclusion into the correlated mutations approach for protein contacts prediction To study solvent impact on protein interfaces a molecular dynamics (MD) approach has been used. This part of the work is elaborated in section 2.1 of this thesis. We have characterized properties of water-mediated protein interactions at residue and solvent level. For this purpose, an MD analysis of 17 representative complexes from SH3 and immunoglobulin protein families has been performed. We have shown that the interfacial residues interacting through a single water molecule (wet spots) are energetically and dynamically very similar to other interfacial residues. At the same time, water molecules mediating protein interactions have been found to be significantly less mobile than surface solvent in terms of residence time. Calculated free energies indicate that these water molecules should significantly affect formation and stability of a protein-protein complex. The results obtained in this part of the work also suggest that water molecules in protein interfaces contribute to the conservation of protein interactions by allowing more sequence variability in the interacting partners, which has important implications for the use of the correlated mutations concept in protein interactions studies. This concept is based on the assumption that interacting protein residues co-evolve, so that a mutation in one of the interacting counterparts is compensated by a mutation in the other. The study presented in section 2.2 has been carried out to prove that an explicit introduction of solvent into the correlated mutations concept indeed yields qualitative improvement of existing approaches. For this, we have used the data on interfacial solvent obtained from the SCOWLP database (the whole PDB) to construct a “wet” similarity matrix. This matrix has been used for prediction of protein contacts together with a well-established “dry” matrix. We have analyzed two datasets containing 50 domains and 10 domain pairs, and have compared the results obtained by using several combinations of both “dry” and “wet” matrices. We have found that for predictions for both intra- and interdomain contacts the introduction of a combination of a “dry” and a “wet” similarity matrix improves the predictions in comparison to the “dry” one alone. Our analysis opens up the idea that the consideration of water may have an impact on the improvement of the contact predictions obtained by correlated mutations approaches. There are two principally novel aspects in this study in the context of the used correlated mutations methodology : i) the first introduction of solvent explicitly into the correlated mutations approach; ii) the use of the definition of protein-protein interfaces, which is essentially different from many other works in the field because of taking into account physico-chemical properties of amino acids and not being exclusively based on distance cut-offs. II. The second part of the thesis is focused on properties of fluorinated amino acids in protein environments. In general, non-canonical amino acids with newly designed side-chain functionalities are powerful tools that can be used to improve structural, catalytic, kinetic and thermodynamic properties of peptides and proteins, which otherwise are not feasible within the use of canonical amino acids. In this context fluorinated amino acids have increasingly gained in importance in protein chemistry because of fluorine's unique properties: high electronegativity and a small atomic size. Despite the wide use of fluorine in drug design, properties of fluorine in protein environments have not been yet extensively studied. The aims of this part of the dissertation were: 1. to analyze the basic properties of fluorinated amino acids such as electrostatic and geometric characteristics, hydrogen bonding abilities, hydration properties and conformational preferences (section 3.1) 2. to describe the behavior of fluorinated amino acids in systems emulating protein environments (section 3.2, section 3.3) First, to characterize fluorinated amino acids side chains we have used fluorinated ethane derivatives as their simplified models and applied a quantum mechanics approach. Properties such as charge distribution, dipole moments, volumes and size of the fluoromethylated groups within the model have been characterized. Hydrogen bonding properties of these groups have been compared with the groups typically presented in natural protein environments. We have shown that hydrogen and fluorine atoms within these fluoromethylated groups are weak hydrogen bond donors and acceptors. Nevertheless they should not be disregarded for applications in protein engineering. Then, we have implemented four fluorinated L-amino acids for the AMBER force field and characterized their conformational and hydration properties at the MD level. We have found that hydrophobicity of fluorinated side chains grows with the number of fluorine atoms and could be explained in terms of high electronegativity of fluorine atoms and spacial demand of fluorinated side-chains. These data on hydration agrees with the results obtained in the experimental work performed by our collaborators. We have rationally engineered systems that allow us to study fluorine properties and extract results that could be extrapolated to proteins. For this, we have emulated protein environments by introducing fluorinated amino acids into a parallel coiled-coil and enzyme-ligand chymotrypsin systems. The results on fluorination effect on coiled-coil dimerization and substrate affinities in the chymotrypsin active site obtained by MD, molecular docking and free energy calculations are in strong agreement with experimental data obtained by our collaborators. In particular, we have shown that fluorine content and position of fluorination can considerably change the polarity and steric properties of an amino acid side chain and, thus, can influence the properties that a fluorinated amino acid reveals within a native protein environment. III. Coiled-coils typically consist of two to five right-handed α-helices that wrap around each other to form a left-handed superhelix. The interface of two α-helices is usually represented by hydrophobic residues. However, the analysis of protein databases revealed that in natural occurring proteins up to 20% of these positions are populated by polar and charged residues. The impact of these residues on stability of coiled-coil system is not clear. MD simulations together with free energy calculations have been utilized to estimate favourable interaction partners for uncommon amino acids within the hydrophobic core of coiled-coils (Chapter 4). Based on these data, the best hits among binding partners for one strand of a coiled-coil bearing a charged amino acid in a central hydrophobic core position have been selected. Computational data have been in agreement with the results obtained by our collaborators, who applied phage display technology and CD spectroscopy. This combination of theoretical and experimental approaches allowed to get a deeper insight into the stability of the coiled-coil system. To conclude, this thesis widens existing concepts of protein structural biology in three areas of its current importance. We expand on the role of solvent in protein interfaces, which contributes to the knowledge of physico-chemical properties underlying protein-protein interactions. We develop a deeper insight into the understanding of the fluorine's impact upon its introduction into protein environments, which may assist in exploiting the full potential of fluorine's unique properties for applications in the field of protein engineering and drug design. Finally we investigate the mechanisms underlying coiled-coil system folding. The results presented in the thesis are of definite importance for possible applications (e.g. introduction of solvent explicitly into the scoring function) into protein folding, docking and rational design methods. The dissertation consists of four chapters: ● Chapter 1 contains an introduction to the topic of protein-protein interactions including basic concepts and an overview of the present state of research in the field. ● Chapter 2 focuses on the studies of the role of solvent in protein interfaces. ● Chapter 3 is devoted to the work on fluorinated amino acids in protein environments. ● Chapter 4 describes the study of coiled-coils folding properties. The experimental parts presented in Chapters 3 and 4 of this thesis have been performed by our collaborators at FU Berlin. Sections 2.1, 2.2, 3.1, 3.2 and Chapter 4 have been submitted/published in peer-reviewed international journals. Their organization follows a standard research article structure: Abstract, Introduction, Methodology, Results and discussion, and Conclusions. Section 3.3, though not published yet, is also organized in the same way. The literature references are summed up together at the end of the thesis to avoid redundancy within different chapters.
8

Protein-protein interactions: impact of solvent and effects of fluorination

Samsonov, Sergey 16 November 2009 (has links)
Proteins have an indispensable role in the cell. They carry out a wide variety of structural, catalytic and signaling functions in all known biological systems. To perform their biological functions, proteins establish interactions with other bioorganic molecules including other proteins. Therefore, protein-protein interactions is one of the central topics in molecular biology. My thesis is devoted to three different topics in the field of protein-protein interactions. The first one focuses on solvent contribution to protein interfaces as it is an important component of protein complexes. The second topic discloses the structural and functional potential of fluorine's unique properties, which are attractive for protein design and engineering not feasible within the scope of canonical amino acids. The last part of this thesis is a study of the impact of charged amino acid residues within the hydrophobic interface of a coiled-coil system, which is one of the well-established model systems for protein-protein interactions studies. I. The majority of proteins interact in vivo in solution, thus studies of solvent impact on protein-protein interactions could be crucial for understanding many processes in the cell. However, though solvent is known to be very important for protein-protein interactions in terms of structure, dynamics and energetics, its effects are often disregarded in computational studies because a detailed solvent description requires complex and computationally demanding approaches. As a consequence, many protein residues, which establish water-mediated interactions, are neither considered in an interface definition. In the previous work carried out in our group the protein interfaces database (SCOWLP) has been developed. This database takes into account interfacial solvent and based on this classifies all interfacial protein residues of the PDB into three classes based on their interacting properties: dry (direct interaction), dual (direct and water-mediated interactions), and wet spots (residues interacting only through one water molecule). To define an interaction SCOWLP considers a donor–acceptor distance for hydrogen bonds of 3.2 Å, for salt bridges of 4 Å, and for van der Waals contacts the sum of the van der Waals radii of the interacting atoms. In previous studies of the group, statistical analysis of a non-redundant protein structure dataset showed that 40.1% of the interfacial residues participate in water-mediated interactions, and that 14.5% of the total residues in interfaces are wet spots. Moreover, wet spots have been shown to display similar characteristics to residues contacting water molecules in cores or cavities of proteins. The goals of this part of the thesis were: 1. to characterize the impact of solvent in protein-protein interactions 2. to elucidate possible effects of solvent inclusion into the correlated mutations approach for protein contacts prediction To study solvent impact on protein interfaces a molecular dynamics (MD) approach has been used. This part of the work is elaborated in section 2.1 of this thesis. We have characterized properties of water-mediated protein interactions at residue and solvent level. For this purpose, an MD analysis of 17 representative complexes from SH3 and immunoglobulin protein families has been performed. We have shown that the interfacial residues interacting through a single water molecule (wet spots) are energetically and dynamically very similar to other interfacial residues. At the same time, water molecules mediating protein interactions have been found to be significantly less mobile than surface solvent in terms of residence time. Calculated free energies indicate that these water molecules should significantly affect formation and stability of a protein-protein complex. The results obtained in this part of the work also suggest that water molecules in protein interfaces contribute to the conservation of protein interactions by allowing more sequence variability in the interacting partners, which has important implications for the use of the correlated mutations concept in protein interactions studies. This concept is based on the assumption that interacting protein residues co-evolve, so that a mutation in one of the interacting counterparts is compensated by a mutation in the other. The study presented in section 2.2 has been carried out to prove that an explicit introduction of solvent into the correlated mutations concept indeed yields qualitative improvement of existing approaches. For this, we have used the data on interfacial solvent obtained from the SCOWLP database (the whole PDB) to construct a “wet” similarity matrix. This matrix has been used for prediction of protein contacts together with a well-established “dry” matrix. We have analyzed two datasets containing 50 domains and 10 domain pairs, and have compared the results obtained by using several combinations of both “dry” and “wet” matrices. We have found that for predictions for both intra- and interdomain contacts the introduction of a combination of a “dry” and a “wet” similarity matrix improves the predictions in comparison to the “dry” one alone. Our analysis opens up the idea that the consideration of water may have an impact on the improvement of the contact predictions obtained by correlated mutations approaches. There are two principally novel aspects in this study in the context of the used correlated mutations methodology : i) the first introduction of solvent explicitly into the correlated mutations approach; ii) the use of the definition of protein-protein interfaces, which is essentially different from many other works in the field because of taking into account physico-chemical properties of amino acids and not being exclusively based on distance cut-offs. II. The second part of the thesis is focused on properties of fluorinated amino acids in protein environments. In general, non-canonical amino acids with newly designed side-chain functionalities are powerful tools that can be used to improve structural, catalytic, kinetic and thermodynamic properties of peptides and proteins, which otherwise are not feasible within the use of canonical amino acids. In this context fluorinated amino acids have increasingly gained in importance in protein chemistry because of fluorine's unique properties: high electronegativity and a small atomic size. Despite the wide use of fluorine in drug design, properties of fluorine in protein environments have not been yet extensively studied. The aims of this part of the dissertation were: 1. to analyze the basic properties of fluorinated amino acids such as electrostatic and geometric characteristics, hydrogen bonding abilities, hydration properties and conformational preferences (section 3.1) 2. to describe the behavior of fluorinated amino acids in systems emulating protein environments (section 3.2, section 3.3) First, to characterize fluorinated amino acids side chains we have used fluorinated ethane derivatives as their simplified models and applied a quantum mechanics approach. Properties such as charge distribution, dipole moments, volumes and size of the fluoromethylated groups within the model have been characterized. Hydrogen bonding properties of these groups have been compared with the groups typically presented in natural protein environments. We have shown that hydrogen and fluorine atoms within these fluoromethylated groups are weak hydrogen bond donors and acceptors. Nevertheless they should not be disregarded for applications in protein engineering. Then, we have implemented four fluorinated L-amino acids for the AMBER force field and characterized their conformational and hydration properties at the MD level. We have found that hydrophobicity of fluorinated side chains grows with the number of fluorine atoms and could be explained in terms of high electronegativity of fluorine atoms and spacial demand of fluorinated side-chains. These data on hydration agrees with the results obtained in the experimental work performed by our collaborators. We have rationally engineered systems that allow us to study fluorine properties and extract results that could be extrapolated to proteins. For this, we have emulated protein environments by introducing fluorinated amino acids into a parallel coiled-coil and enzyme-ligand chymotrypsin systems. The results on fluorination effect on coiled-coil dimerization and substrate affinities in the chymotrypsin active site obtained by MD, molecular docking and free energy calculations are in strong agreement with experimental data obtained by our collaborators. In particular, we have shown that fluorine content and position of fluorination can considerably change the polarity and steric properties of an amino acid side chain and, thus, can influence the properties that a fluorinated amino acid reveals within a native protein environment. III. Coiled-coils typically consist of two to five right-handed α-helices that wrap around each other to form a left-handed superhelix. The interface of two α-helices is usually represented by hydrophobic residues. However, the analysis of protein databases revealed that in natural occurring proteins up to 20% of these positions are populated by polar and charged residues. The impact of these residues on stability of coiled-coil system is not clear. MD simulations together with free energy calculations have been utilized to estimate favourable interaction partners for uncommon amino acids within the hydrophobic core of coiled-coils (Chapter 4). Based on these data, the best hits among binding partners for one strand of a coiled-coil bearing a charged amino acid in a central hydrophobic core position have been selected. Computational data have been in agreement with the results obtained by our collaborators, who applied phage display technology and CD spectroscopy. This combination of theoretical and experimental approaches allowed to get a deeper insight into the stability of the coiled-coil system. To conclude, this thesis widens existing concepts of protein structural biology in three areas of its current importance. We expand on the role of solvent in protein interfaces, which contributes to the knowledge of physico-chemical properties underlying protein-protein interactions. We develop a deeper insight into the understanding of the fluorine's impact upon its introduction into protein environments, which may assist in exploiting the full potential of fluorine's unique properties for applications in the field of protein engineering and drug design. Finally we investigate the mechanisms underlying coiled-coil system folding. The results presented in the thesis are of definite importance for possible applications (e.g. introduction of solvent explicitly into the scoring function) into protein folding, docking and rational design methods. The dissertation consists of four chapters: ● Chapter 1 contains an introduction to the topic of protein-protein interactions including basic concepts and an overview of the present state of research in the field. ● Chapter 2 focuses on the studies of the role of solvent in protein interfaces. ● Chapter 3 is devoted to the work on fluorinated amino acids in protein environments. ● Chapter 4 describes the study of coiled-coils folding properties. The experimental parts presented in Chapters 3 and 4 of this thesis have been performed by our collaborators at FU Berlin. Sections 2.1, 2.2, 3.1, 3.2 and Chapter 4 have been submitted/published in peer-reviewed international journals. Their organization follows a standard research article structure: Abstract, Introduction, Methodology, Results and discussion, and Conclusions. Section 3.3, though not published yet, is also organized in the same way. The literature references are summed up together at the end of the thesis to avoid redundancy within different chapters.
9

Příprava a charakterizace vazebných proteinů mimikujících epitopy protilátek neutralizujících virus HIV-1 / Preparation and Characterization of Protein Binders Mimicking Epitopes of HIV-1 Neutralizing Antibodies

Šulc, Josef January 2021 (has links)
For three decades, the ongoing HIV pandemic has taken the lives of tens of millions of people. Still, more tens of millions are fighting this incurable disease today. Current failures in combating this global problem are caused mainly by the virus's extreme ability of mutation, its very effective molecular shield which repels the immune system's attacks, and its immense variability. A breakthrough, achieved relatively recently, is the discovery of the so-called broadly neutralizing antibodies against HIV-1, which carry a very efficient and broad neutralizing response. So far, it's not known how to elucidate the production of these antibodies in the infected hosts to quell or altogether eliminate the virus. This work deals with experimental results, which led to both in vivo and in vitro proof-of-concept of the so-called protein mimetics, the ability to imitate viral surface epitopes, and therefore stimulate an efficient immune response carried by targeted broadly neutralizing antibodies. This effect is mediated by recombinant binding proteins, based on the Myomedin scaffold. This work describes the selection and characterization of these binding proteins mimicking the epitopes of one of the most effective broadly neutralizing antibodies, 10E8. It shows that the binding affinities of selected...

Page generated in 0.0171 seconds