• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Protein Folding, Binding and Evolution : PDZ domains and paralemmins as model systems

Hultqvist, Greta January 2013 (has links)
Proteins present at the synapse need to be multitasking in order to perform all vital functions in this limited space. In this thesis I have analyzed the function and evolution of such proteins, focusing on the PDZ domain and the paralemmin family. The PDZ domains bind to a wide variety of interaction partners. The affinity for each partner is regulated by residues at the binding site, but also through intradomain allostery. How this intradomain allostery is transferred to the binding site is not established. I here show that side chain interactions can explain all transfer of intradomain allostery in three analyzed PDZ domains. A circularly permuted PDZ domain has an identical set of amino acids as the original protein and a very similar structure with only a few perturbed side chains. By using the circular permutant I show that a slight alteration in the position of a side chain leads to a corresponding change in allosteric signal. I further study the folding of several PDZ domains and show that they all fold via a conserved folding mechanism, supporting the notion that the final structure has a part in deciding folding mechanism. The folding mechanism of the circularly permuted PDZ domain is conserved compared to the original protein illustrating how circular permutations can be tolerated through evolution. The multifunctionality of paralemmins probably lies in their highly flexible structures. I have studied the evolution of the paralemmins and found that the four mammalian paralemmins arose in the two whole-genome duplications that occurred early in the vertebrate evolution. The fact that all four paralemmins have survived evolution since the gene duplications suggests that they have important functions, possibly in the development of the nervous system. Synaptic proteins are crucial for many biological processes, and their misfolding implicated in many diseases. The results presented here shed light on the mechanisms of action of the synaptic proteins and will help us to understand how they generate disease.
2

Structural characterization of the type II secretion system of Aeromonas hydrophila

2012 April 1900 (has links)
The exeC gene, found in the gram-negative bacteria Aeromonas hydrophila codes for a 31 kDa, three domain, bitopic inner membrane protein. The components of the ExeC protein include an amino-terminal cytoplasmic domain, a trans-membrane helix and two periplasmic domains. The two periplasmic domains are involved in recognition and selection of protein substrates which are subsequently transported across the outer membrane and free of the cell. This study focuses exclusively on the two periplasmic domains referred to hereafter as the HR and the PDZ domains. Three constructs were used throughout the course of this study. Two of them were designed, cloned and expressed for this study. The third is a result of previous work. Two constructs contained both the HR and PDZ domains while the other consists of the amino-terminal periplasmic HR domain. Only one construct was used to grow single crystals for analysis by X-ray crystallography. Crystals comprised of the PDZ domain from a degraded construct grew in a hexagonal space group with a hexagonal bi-pyramidal morphology. Crystals diffracted anisotropically to a maximum resolutions of 2 Å along the c axis and 3 Å in the a/b plane. Anisotropy in combination with twinning drastically complicated structure solution. Efforts toward elucidating the crystal structure will be discussed.
3

Characterization and Engineering of Protein-Protein Interactions Involving PDZ Domains

Karlsson, Andreas January 2017 (has links)
The work presented in this thesis has contributed with knowledge to several aspects of protein-protein interaction involving PDZ domains. A substantial amount of our proteome contains regions that are intrinsically disordered but fold upon ligand interaction. The mechanism by which disordered regions bind to their ligands is one important piece of the puzzle to understand why disorder is beneficial. A region in the PDZ domain of nNOS undergoes such a disorder-to-order transition to form a b-sheet in the binding pocket of its partner. By studying the kinetics of interaction, in combination with mutations that modulate the stability of the aforementioned region, we demonstrate that the binding mechanism consists of multiple steps in which the native binding interactions of the b-sheet are formed cooperatively after the rate-limiting transition state. These mechanistic aspects may be general for the binding reactions of intrinsically disordered protein regions, at least upon formation of β-sheets.               The second part of this thesis deals with the engineering of proteins for increasing affinity in protein-protein interaction. Infection by high-risk human papillomavirus (hrHPV) can lead to cancer, and the viral E6 protein is an attractive drug target. E6 from hrHPV natively interacts with the well-characterized PDZ2 domain in SAP97, which we used as a scaffold to develop a high affinity bivalent binder of hrHPV E6. We initially increased PDZ2's affinity for E6 6-fold, but at the cost of decreased specificity. Attaching a helix that binds E6 at a distant site, increasing the affinity another14-fold, completed the design.             The final work of this thesis investigates if binding studies conducted with isolated PDZ domains is representative of the full-length proteins they belong to. It has been suggested that ligand binding in PDZ domains can be influenced by factors such as adjacent domains and interactions outside of the binding pocket. We studied these aspects for the three PDZ domains of PSD-95 and found that they on the whole function in an independent manner with short peptides as ligands, but that interactions outside of the PDZ binding-pocket may be present. The representative length of the PDZ interaction partner should therefore be considered.
4

Engineering PDZ domain specificity

Sun, Young Joo 01 May 2019 (has links)
PSD-95/Dlg/ZO-1 (PDZ) domain - PDZ binding motif (PBM) interactions have been one of the most well studied protein-protein interaction systems through biochemical, biophysical and high-throughput screening (HTS) strategies. This has allowed us to understand the mechanism of individual PDZ-PBM interactions and the re-engineering of PBMs to bind tighter or to gain or lose certain specificity. However, there are several thousand native PDZ domains whose biological ligands remain unknown. Because of the low sequence identity among PDZ domain homologues, promiscuous binding profiles (defined as a PDZ domain that can accommodate a set of PBMs or a PBM that can be recognized by many PDZ domains), and context-dependent interaction mechanism, we have an inadequate understanding of the general molecular mechanisms that determine the PDZ-PBM specificity. Therefore, predicting PDZ specificity has been elusive. In addition, no de novo PBM ligand or artificial non-native PDZ domain have been successfully designed. This reflects the general challenges in understanding the general principles of PDZ-ligand interactions, namely that they are context-dependent, exhibit weak binding affinity, narrow binding energy range, and larger interaction surface than other protein-ligand interactions. Together, PDZ domains make good model systems to investigate the fundamental principles of protein-protein interactions with a wide spectrum of biomedical implications. My studies suggest that understanding PBM specificity with the set of structural positions forming the binding pocket can connect sequence, structure and function of a PDZ domain in a general context. They also suggest that this way of understanding the specificity will shed light on prediction and engineering of specificity rationally. Structural analysis on most of the available PDZ domain structures was established to support the principle (Chapter I). The principle was tested against two different types of PBM; C-terminal PBM (Chapter II) and internal PBM (Chapter III), and shown to support better understanding and design of PDZ domain specificity. We further applied the principle to design de novo PDZ domains, and the preliminary data hints that it is optimistic to engineer PDZ domain specificity (Appendix A and B).
5

Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition Modules

Tonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity. Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays. The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
6

Mapping Specificity Profiles and Protein Interaction Networks for Peptide Recognition Modules

Tonikian, Raffi 03 March 2010 (has links)
Protein-protein interactions are of vital importance to the cell as they mediate the assembly of protein complexes that carry out diverse biological functions. Many proteins involved in cellular signaling are built by the combinatorial use of peptide recognition modules (PRMs), which are small protein domains that bind to their cognate ligands by recognizing short linear peptide motifs. Thousands of PRMs are found in nature, requiring improved methods to better elucidate their molecular determinants of binding and to allow accurate mapping of their interaction networks. In this thesis, I describe the development and application of phage-displayed peptide libraries to map the binding specificities of two common PRMs. First, I generated specificity profiles for 82 C. elegans and human PDZ domains that could be organized into a specificity map. The map revealed that PDZ domains have far greater substrate sequence specificity than previously believed, providing significant insights into the relationships between PDZ structure and specificity, and allowing specificity prediction for uncharacterized domains. My results were used to predict both endogenous and pathogenic PDZ interactions. This analysis revealed that viruses have evolved ligands that specifically mimic PDZ domains to subvert host cell immunity. Second, I analyzed the binding specificity for the SH3 domain family in S. cerevisae. I found that, like PDZ domains, SH3 domains have binding specificities that are more detailed than the conventional classification system. The phage-derived specificity profiles were combined with data from oriented peptide and yeast two-hybrid screening to generate a highly accurate SH3 domain interaction network. Given the prominent role of SH3 domains in endocytosis, the SH3 domain interaction data was used to predict the dynamic localization of several uncharacterized endocytosis proteins, which was subsequently confirmed by cell-based assays. The application of the techniques described here to other PRM families will significantly improve protein interaction maps for signaling pathways, which will illuminate our understanding of the cell circuitry, allow the use of PRMs as general affinity reagent and detection tools, and guide the development of small molecule inhibitors that mimic their peptide ligands for therapeutic intervention.
7

The LNX Family of Multi-PDZ E3 Ligases: Using a Mutagenesis-based Approach to Establish the Role of PDZ Domains in LNX1 Function

Prevost, Brittany 19 March 2013 (has links)
LNX1 belongs to a family of multi-PDZ domain containing RING-type E3 ligases. Several interactions have been mapped to its PDZ domains, but the role of each domain in LNX function has not yet been determined. To study individual PDZ domain function in the context of full length protein I generated point mutations in peptide binding sites of each of PDZ domain, and in a putative phosphoinositide binding site of LNX1 PDZ4. Peptide binding was successfully disrupted by an arginine or lysine to alanine mutation in the peptide binding cleft. A LNX1 PDZ4 mutant with lysine residues in a putative phosphoinositide binding site mutated to glutamate displayed decreased membrane localization. The impact of each PDZ mutation on cell morphology and substrate ubiquitination was also investigated. I identified a potential role for PDZ binding in auto-inhibition of RING function. Additionally, novel interactions between LNX1 and Frizzled family members were identified and characterized.
8

The LNX Family of Multi-PDZ E3 Ligases: Using a Mutagenesis-based Approach to Establish the Role of PDZ Domains in LNX1 Function

Prevost, Brittany 19 March 2013 (has links)
LNX1 belongs to a family of multi-PDZ domain containing RING-type E3 ligases. Several interactions have been mapped to its PDZ domains, but the role of each domain in LNX function has not yet been determined. To study individual PDZ domain function in the context of full length protein I generated point mutations in peptide binding sites of each of PDZ domain, and in a putative phosphoinositide binding site of LNX1 PDZ4. Peptide binding was successfully disrupted by an arginine or lysine to alanine mutation in the peptide binding cleft. A LNX1 PDZ4 mutant with lysine residues in a putative phosphoinositide binding site mutated to glutamate displayed decreased membrane localization. The impact of each PDZ mutation on cell morphology and substrate ubiquitination was also investigated. I identified a potential role for PDZ binding in auto-inhibition of RING function. Additionally, novel interactions between LNX1 and Frizzled family members were identified and characterized.
9

Structural and interaction studies of PSD95 PDZ domain-mediated Kir2.1 clustering mechanisms

Rodzli, Nazahiyah January 2017 (has links)
PSD95 is the canonical member of the Membrane Associated Guanylate Kinase class of scaffold proteins. PSD95 is a five-domain major scaffolding protein abundant in the postsynaptic density (PSD) of the neuronal excitatory synapse. Within PSD95 three PDZ domains modulate protein-protein interactions by selectively binding to short peptide motifs of target proteins. Under the direction of the multivalent PDZ domain interactions, the interacting proteins tend to cluster at the PSD, a phenomenon that is critical for synaptic signalling regulation. Earlier studies have shown that the N-terminal PDZ domains of PSD95 are obligatory for the clustering to occur. This thesis focuses on the strong inwardly rectifying potassium channel, Kir2.1 as the PSD95 binding partner. Kir2.1 is known to maintain membrane resting potential and control cell excitability. Previous studies have reported that Kir2.1 clustered into ordered tetrad complexes upon association with PSD95.This study investigates the detailed clustering mechanisms of Kir2.1 by PDZ domains. To achieve this, components that are involved in the formation of a complex namely PSD95 sub-domains comprising single PDZ and the tandem N terminal PDZ double domain (PDZ1-2), and Kir2.1 cytoplasmic domains(Kir2.1NC) are studied in detail via different structural and biophysical approaches; 1) PDZ1-2 is examined in apo- and bound ligand form with a Kir2.1 Cterminal peptide in crystal and solution via X-ray crystallography and small angle X-ray scattering; 2) the tandem and the single PDZ domain interaction with ligand are measured thermodynamically via isothermal calorimetry (ITC); 3) the complex of full length PSD95 with Kir2.1NC is analyzed with electron microscopy (EM). The protein components are produced in high quality by protein expression and multiple-step protein purification techniques. PDZ1-2 crystallographic structures were solved at 2.02A and 2.19A in theapo- and the liganded forms respectively. The solution state analysis showed domain separation and structural extension of the tandem domain when incorporated with the ligand. The ITC experiment revealed PDZ1-2 to have greater affinity towards the peptide ligand relative to the single PDZ domains. These combinatorial outcomes lead to the conclusion that PSD95 clusters Kir2.1 by adopting an enhanced binding interaction which is associated with increased PDZ1-2 inter-domain separation. The preliminary analysis of PSD95-Kir2.1NC complex with cryo-EM showed the establishment of a tetrad and led to a reconstruction at 40A resolution. The work in obtaining a higher resolution complex structure is promising with further data collection required to allow the employment of more sophisticated model reconstruction processes.
10

The Rational Investigation of Anti-Cancer Peptide Specificity using the Knob-Socket Model

Patel, Shivarni 01 January 2017 (has links) (PDF)
Cancer has been a pervasive and deadly problem for many years. No treatments have been developed that effectively destroy cancer cells while also keeping healthy cells safe. In this work, the knob-socket construct is used to analyze two systems involved in cancer pathways, the PDZ domain and the Bcl-BH3 complex. Application of the knob-socket model in mapping the packing surface topology (PST) allows a direct analysis of the residue groups important for peptide specificity and affinity in both of these systems. PDZ domains are regulatory proteins that bind the C-terminus of peptides involved in the signaling pathway of cancer progression. The domain includes five -strands, two -helices, and six coils/turns. In this study, the PST of all eight solved crystal structures of T-cell lymphoma invasion and metastasis 1 (Tiam1) PDZ domains are mapped to reveal details of ligand-domain binding pockets and packing interactions. Four main interactions were identified in the comparison of the PST maps and a consensus sequence was calculated using knob-socket interaction data. In the case of the Bcl-BH3 complex, binding of these two proteins prevents an unhealthy cell from undergoing apoptosis. In the knob-socket mapped protein-ligand interactions, the helical ligand consists of 8 to 10 residues that specifically interact with four helices on the binding protein: the N-terminus of Helix2, the main bodies of Helix3 and Helix4 and the C-terminus of Helix5. Among all of the interactions that were analyzed, there were three amino acids from the ligand, glycine, leucine, and isoleucine, that always packed into the hydrophobic groove that is key for ligand recognition. By using knob-socket analysis to map quaternary packing structure, it was possible to identify the quaternary-level protein interactions that define ligand specificity and binding strength. From this analysis, possible protein mimetics can be developed that could be used as cancer treatments.

Page generated in 0.0221 seconds