Spelling suggestions: "subject:"PEM fuel cell"" "subject:"PEM quel cell""
41 |
Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous MediaUnsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL).
Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL.
The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
|
42 |
Surface Wettability Impact on Water Management in PEM Fuel CellAl Shakhshir, Saher January 2012 (has links)
Excessive water formation inside the polymer electrolyte membrane (PEM) fuel cell’s structures leads to the flooding of the cathode gas diffusion layer (GDL) and cathode gas flow channels. This results in a negative impact on water management and the overall cell performance. Liquid water generated in the cathode catalyst layer and the water moved from anode to cathode side due to electro-osmotic drag transport through the GDL to reach the gas flow field channels, where it is removed by air cathode gas stream. Due to high and uniform capillary force distribution effect of the pores through the GDL plane and surface tension between the water droplets and gas flow field channels surfaces, liquid water tends to block/fill the pores of the GDL and stick to the surface of the GDL and gas flow channels. Therefore, it is difficult to remove the trapped water in GDL structure which can lead to flood of the PEM fuel cell. The GDL surfaces are commonly treated uniformly with a hydrophobic material in order to overcome the flooding phenomena inside PEM fuel cell. Despite the importance impact of the surface wettability of both channel and GDL surface characteristics especially for the cathode side on the water management, few experimental studies have been conducted to investigate the effect of the two-phase flow in cathode gas flow channel and their crucial role. The work presented in this thesis covers contributions that provide insight, not only into the investigation of the effects of hydrophobic cathode GDL and cathode gas flow channels, on water removal, two phase flow inside the channel, and on PEM fuel cell performance, but also the superhydrophobic and superhydrophilic GDLs and gas flow channels effects. Further, the effects of a novel GDL designs with sandwich and gradient wettability with driving capillary force through GDL plane have been investigated. Two-phase flow especially in the cathode gas flow field channels of PEM fuel cell has a crucial role on water removal. Hence, in this research, ex-situ investigations of the effects of channels with different surface wettability; superhydrophobic, hydrophobic, slightly hydrophobic, and superhydrophilic on the two-phase flow characteristics have been tested and visualized at room temperature. Pressure drop measurements and two-phase flow visualization have been carried out using high speed camera. The effect of the various coating materials on graphite and GDL surface morphology, roughness, static contact angle (θ), and sliding contact angle (α) have been investigated using scanning electron microscopy (SEM), Profilometry, and sessile drop technique, respectively. It has been observed that the two-phase flow resistance is considerably affected by surface wettability of the channels. Further, the overall cell performance can be improved by superhydrophobic gas flow channels mainly at high current density over slightly hydrophobic and superhydrophilic cases tested. In addition, sandwich wettability GDL has been coated with a silica particle/ Polydimethylsiloxane (PDMS) composite. The porometric characteristics have been studied using, method of standard porosimetry (MSP). It has been found that sandwich wettability GDL has superhydrophobic surfaces with (θ = 162±2°), (α = 5±1°), and the internal pores are hydrophilic, while the mean pore radius is 7.1μm. This shows a low resistance to gas transport. On the other hand, performance testing indicates that (PEM) fuel cell equipped with sandwich wettability GDL results in the best performance compared to those with raw (non-coated) (slightly hydrophobic), PTFE coated (commercial with micro-porous layer (MPL)) (superhydrophobic), and silica coated (superhydrophilic) GDL. The wettability gradient has been introduced through plane of the one side hydrophobic GDL by coating one side of non-coated GDL with 15 wt. % of PTFE solution; however, the other side remains uncoated. The effects of wettability gradient on the water removal rate, droplet dynamics, and PEM fuel cell performance have been covered in this thesis. Water removal rate is determined using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is fixed on the barrel opening. The droplets penetrating through the GDL are visualized via a high speed camera to study the droplets’ dynamic characteristics. The GDL wettability gradient has a significant impact on water removal rate, droplets’ dynamic characteristics, and consequently enhances the overall PEM fuel cell performance.
|
43 |
The Analysis of Solar - Fuel Cell Hybrid SystemsJanuary 2017 (has links)
abstract: As the demand for renewable and alternative energy continues to increase with both large industrial companies and average homeowners, there continues to be a challenge of efficient energy storage. Several main alternative energy producers such as wind turbines, hydroelectric dams, and solar photovoltaic arrays have become more commonly used over the past decade for generating energy. One of the most common issues with these alternative energy producers is the intermittent production and supply of energy due to fluctuations in weather conditions, peak loads, and instantaneous power draw. To counteract these issues, storage units such as battery banks and proton exchange membrane fuel cells are introduced to provide electricity for the unmet energy demands. In this study, a solar photovoltaic array and fuel cell hybrid system has been set up to provide the energy needs for an average Arizona residential household. A bench test setup has revealed that a solar photovoltaic array and the fuel cell hybrid system can produce enough energy to power an Arizona household that on average consumes 37.7 kWh/d. Additionally, a Mathworks MATLAB/Simulink model of the hybrid system has been created to simulate specific scenarios which provide insight into the system’s reaction to various conditions such as varying solar irradiance and temperature variables and poor weather conditions. Finally, the economic impact of the hybrid system was simulated using HOMER Legacy to analyze the cost effectiveness of a 25-year project. / Dissertation/Thesis / Masters Thesis Engineering 2017
|
44 |
Étude de systèmes pile à combustible hybridés embarqués pour l'aéronautique / Study of Airborne Hybridized Fuel Cell Systems for AeronauticsHordé, Théophile 30 November 2012 (has links)
Le domaine du transport aérien est en plein effort de réduction de ses émissions de gaz à effet de serre. Les PEMFC sont sérieusement envisagées afin d'introduire d'avantage d'énergie électrique à bord des avions. On se propose d'étudier la faisabilité de la propulsion d'avions légers alimentés par des systèmes pile à combustible hybridés. On étudie plus spécifiquement un système hybride PEMFC / Batteries Li-Ion produisant un total de 40 kW (20 kW PàC + 20 kW Li-Ion) permettant de propulser un avion léger biplace. Le premier aspect de cette étude est la navigabilité des PEMFC, c'est à dire leur aptitude à fonctionner en milieu aérien. Le second aspect est l'architecture électrique du système hybride, son dimensionnement et son comportement lors de différents profils de vol. Des essais expérimentaux en altitude sont menés et permettent de quantifier la diminution des performances de PàC aérobies liée à la diminution de pression ambiante. Grâce à ces essais et à un modèle numérique de PàC, on compare les technologies aérobies et anaérobies pour différents profils de vol. Un bilan des masses et des volumes associé à chacune de ces deux technologies est dressé. Par ailleurs, des essais en inclinaisons de systèmes PEMFC sont réalisés. L'hybridation directe de PEMFC avec des batteries Lithium est étudiée numériquement et expérimentalement. Un modèle Matlab Simulink de PàC et de batteries Lithium est développé afin de prédire le comportement du système hybride direct et de le dimensionner. Enfin, un banc expérimental d'hybridation directe est réalisé et des essais sont menés, révélant l'intérêt de cette architecture innovante. / The domain of air transport is working at reducing its emissions of greenhouse gases. PEMFC are seriously considered as electrical source for future aircraft. The present study focusses on the feasibility of propulsion of a light aircraft powered by hybridized PEMFC systems. The hybrid PEMFC / Li-Ion batteries system studied here produces 40 kW (20 kW PEMFC + 20 kW Li-Ion) and should be able to power a two-seat light aircraft. The first part of the study is dedicated to PEMFC airworthiness, meaning their capacity to work properly in aeronautical conditions. The second part is dedicated to the hybrid system electrical architecture, its dimensioning and its response to various flight profiles. Aerobic PEMFC performance loss due to drop in ambient pressure is quantified thanks to experiments at various altitude. Thanks to these measurements and to a numerical model, aerobic and anaerobic PEMFC are compared according to various flight profiles. A mass and volume balance of each technology is drawn up. In addition, inclination tests of PEMFC systems are performed. Direct hybridization of PEMFC and Li-Ion batteries is studied numerically and experimentally. A Matlab Simulink model of PEMFC and battery is developed in order to forecast the hybrid system's response and to size it. Finally, an experimental bench is settled up and tests are led, proving the interest of such an innovative architecture.
|
45 |
Mechanical integration of a PEM fuel cell for a multifunctional aerospace structureBhatti, Wasim January 2016 (has links)
A multifunctional structural polymer electrolyte membrane (PEM) fuel cell was designed, developed and manufactured. The structural fuel cell was designed to represent the rear rib section of an aircraft wing. Custom membrane electrode assemblies (MEA s) were manufactured in house. Each MEA had an active area of 25cm2.The platinum loading on each electrode (anode and cathode) was 0.5mg/cm2. Sandwiched between the electrodes was a Nafion 212 electrolyte membrane. Additional components of the structural fuel included metallic bipolar plates and end plates. Initially all the components were manufactured from aluminium in order for the structural fuel cell to closely represent an aircraft wing rib. However due to corrosion problems the bipolar plate had to be manufactured from marine grade 361L stainless steel with a protective coating system. A number of different protective coating systems were tried with wood nickel strike, followed by a 5μm intermediate coat of silver and a 2μm gold top coat being the most successful. Full fuel cell experimental setup was developed which included balance of plant, data acquisition and control unit, and a mechanical loading assembly. Loads were applied to the structural fuel cells tip to achieve a static deflection of ±7mm and dynamic deflections of ±3mm, ±5mm, and ±7mm. Static and dynamic torsion induced 1° to 5° of twist to the structural fuel cell tip. Polarisation curves were produced for each load case. Finite element analysis was used to determine the structural fuel cell displacement, and stress/strain over the range of mechanical loads. The structural fuel cells peak power performance dropped 3.9% from 5.5 watts to 5.3 watts during static bending and 2% from 6.2 watts to 6.1 watts during static torsion. During dynamic bending (2000 cycles) the structural fuel cell peak power performance dropped 11% from 6.7 watts to 6 watts (3mm deflection at 190N), 23% from 6.3 watts to 4.8 watts (5mm deflection at 270N), and 41% from 7.2 watts to 5 watts (7mm deflection at 350N). During dynamic torsion (2000 cycles) the structural fuel cell peak power performance dropped 16% from 6 watts to 5.1 watt (3° of torsional loading), and 30% from 6.4 watts to 4.3 watts (5° of torsional loading). The simulated (finite element modelling) displacement of -6.6mm (At maximum bending load of 364.95N) was within 9% of the actual measured displacement of -7.2mm at 364.95N. Furthermore the majority of the simulated strain values were within 10% of the actual measured strain for the structural fuel cell.
|
46 |
Stabilization of Scaffold-Supported, Photopolymerized Bilayer Lipid Membranes with Gramicidin-D for Novel Fuel CellsKorfhagen, Scott 28 August 2008 (has links)
No description available.
|
47 |
Numerical and Experimental Study of Droplet-Air Flow Interaction on the GDL Surface of PEMFC for Water Management Monitoring, Control and DiagnosticsEsposito, Angelo 30 August 2010 (has links)
No description available.
|
48 |
EFFECT OF MECHANICAL VIBRATION ON PLATINUM PARTICLE AGGLOMERATION AND GROWTH IN PROTON EXCHANGE MEMBRANE FUEL CELL CATALYST LAYERDiloyan, Georgiy January 2012 (has links)
The objective of the current research is to study the effect of mechanical vibration on catalyst layer degradation via Platinum (Pt) particle agglomeration and growth in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEM Fuel Cell). This study is of great importance, since many PEM fuel cells operate under a vibrating environment, such as the case of vehicular applications, and this may influence the catalyst layer degradation and fuel cell performance. Through extensive literature review, there are only few researches that have been studied the effect of mechanical vibration on PEM fuel cells. These studies focused only on PEM fuel cell performance under vibration for less than 50 hours and none of them considered the degradation of the fuel cell components, such as MEA and its catalyst layer. To study the effect of the mechanical vibration on the catalyst layer an accelerated test with potential cycling was specially designed to simulate a typical vehicle driving condition. The length of the accelerated test was designed to be 300 hour with potential cycling comprised of idle running, constant load, triangle (variable) load and overload running at various mechanical vibration conditions. These mechanical vibration conditions were as follows: 1g 20 Hz, 1g 40 Hz, 4g 20 Hz and 4g 40 Hz. No vibration tests were also conducted to study the influence of operating time and were used as a baseline for comparison study. The series of accelerated tests were followed by microscopy and spectroscopy analyses using environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and X-Ray diffraction (XRD). An ESEM was used to qualitatively analyze pristine and degraded catalyst. TEM and XRD were used to quantitatively analyze catalyst layer degradation via Pt agglomeration and growth in pristine and degraded states. For each test condition, PEM fuel cell performance by means of Voltage - Current (VI) curves was monitored and recorded. It was observed that the mean diameter of Pt particles tested under mechanical vibration is 10% smaller than the ones that were tested under no vibration conditions. The Pt particles in the order of 2 to 2.5 nm in the pristine state have grown to 6.14 nm (after 300 hour accelerated test at no vibration condition), to 5.64 nm (after 300 hours accelerated test under 4g 20 Hz vibration condition) and to 5.55 nm (after 300 hours accelerated test under 1g 20 Hz vibration condition). The mean Pt particle diameters, after 300 hour accelerated test under 1g 40 Hz and 4g 40 Hz vibration conditions, were 5.89 nm. With an increase of the mean Pt particle diameter, the active surface area of the catalyst layer of the MEA decreases and as a result, performance of MEA and PEM fuel also decreases. It was observed that performance of the MEA tested under no vibration condition is about 10% lower than the one tested under 1g 20 Hz. The VI curve showed that the lowest performance of the MEA after 300 hour accelerated test corresponded to no vibration conditions and equaled to 7.85 Watts at 0.5 V (Pt particle size ~ 6.14 nm) and highest performance, corresponded to the MEA tested under 1g 20 Hz, and equaled to 8.66 Watts at 0.5 V (Pt particle size ~ 5.55 nm). / Mechanical Engineering
|
49 |
Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical AnalysisAl-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right.
The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
|
50 |
Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical AnalysisAl-Smail, Jamal Hussain 19 March 2012 (has links)
Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is that their byproduct is water, which is very safe to the environment. However, hydrogen fuel cells still lack some improvements in terms of increasing their life time and electricity production, decreasing power losses, and optimizing their operating conditions. In this thesis, the cathode part of the hydrogen fuel cell will be considered. This part mainly consists of an air gas channel and a gas diffusion layer. To simulate the fluid dynamics taking place in the cathode, we present two models, a general model and a simple model both based on a set of conservation laws governing the fluid dynamics and chemical reactions. A numerical method to solve these models is presented and verified in terms of accuracy. We also show that both models give similar results and validate the simple model by recovering a polarization curve obtained experimentally. Next, a shape optimization problem is introduced to find an optimal design of the air gas channel. This problem is defined from the simple model and a cost functional, $E$, that measures efficiency factors. The objective of this functional is to maximize the electricity production, uniformize the reaction rate in the catalytic layer and minimize the pressure drop in the gas channel. The impact of the gas channel shape optimization is investigated with a series of test cases in long and short fuel cell geometries. In most instances, the optimal design improves efficiency in on- and off-design operating conditions by shifting the polarization curve vertically and to the right.
The second primary goal of the thesis is to analyze mathematical issues related to the introduced shape optimization problem. This involves existence and uniqueness of the solution for the presented model and differentiability of the state variables with respect to the domain of the air channel. The optimization problem is solved using the gradient method, and hence the gradient of $E$ must be found. The gradient of $E$ is obtained by introducing an adjoint system of equations, which is coupled with the state problem, namely the simple model of the fuel cell. The existence and uniqueness of the solution for the adjoint system is shown, and the shape differentiability of the cost functional $E$ is proved.
|
Page generated in 0.0528 seconds