• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 203
  • 70
  • 53
  • 26
  • 25
  • 19
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 4
  • Tagged with
  • 1235
  • 304
  • 199
  • 191
  • 184
  • 127
  • 123
  • 117
  • 112
  • 91
  • 82
  • 76
  • 70
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Characterization of p120-catenin, a novel RSK substrate in the Ras/MAPK signalling pathway

Gao, Beichen 04 1900 (has links)
La voie de signalisation Ras/mitogen-activated protein kinase (Ras/MAPK) occupe un rôle central dans la régulation de différents processus biologiques tels que la croissance, la survie mais aussi la prolifération cellulaire. En réponse à des signaux extracellulaires, cette voie de signalisation mène à l’activation des protéines ERK1/2, impliquées dans l’activation de nombreux substrats cellulaires dont les protéines kinases RSK (p90 ribosomal S6 kinase). Ces protéines kinases sont, entre autres, impliquées dans l’invasion et la migration cellulaire mais les mécanismes responsables de ces phénomènes biologiques restent inconnus à ce jour. Dans mon mémoire, je développe tout d’abord les travaux précédemment réalisés dans notre laboratoire, et identifie la protéine p120-Catenin (p120ctn), un composant majeur des jonctions adhérentes (AJ), comme un nouveau substrat de la voie Ras/MAPK. En utilisant notamment un anticorps phospho-spécificique, nous avons pu démontrer que p120ctn est phosphorylée sur la sérine 320, un nouveau site de phosphorylation, d’une manière dépendante des kinases RSK. D’autre part, nous avons trouvé que la signalisation Ras/MAPK réduit l’interaction entre les protéines p120ctn et N-cadhérine. Ainsi, nos observations suggèrent que l’activation de la voie Ras/MAPK est impliquée dans la diminution de l’adhérence entre cellules par la déstabilisation des AJ. Compte tenu du rôle primordial de la voie de signalisation Ras/MAPK dans le cancer, ce mécanisme nouvellement décrit pourrait contribuer à l’avancement des connaissances sur le développement des cancers dépendents de cette voie de signalisation. / The Ras/MAPK (mitogen-activated protein kinase) signalling pathway is vital in regulating cell growth, survival and proliferation in response to extracellular signals. Positioned downstream in the pathway, the p90 ribosomal S6 kinase (RSK) family regulates cell invasion by weakening cell-cell adhesion, but the mechanisms involved remain elusive. In this thesis, I expand upon previous work performed in our lab and identify p120ctn, a major component of adherens junctions (AJ), as a new substrate of the Ras/MAPK pathway. Using a phospho-specific antibody, we demonstrate that p120ctn is phosphorylated on a new phosphorylation site on S320 upon activation of MAPK signalling in a RSK-dependent manner. Furthermore, we show that Ras/MAPK signaling reduces p120ctn binding to N-cadherin, suggesting a new mechanism by which MAPK activity decreases cell-cell adhesion by destabilizing AJs. Finally, we designed and optimized two individual assays to be used in future experiments examining the effects of Ras/MAPK signalling on AJ function. Taken together, our data identifies RSK as a regulator of p120ctn phosphorylation, and also implicates Ras/MAPK signalling in regulating cell-cell adhesion by destabilizing AJ through p120ctn. Given the role of Ras/MAPK signalling in cancer, this new mechanism may play a role in the development and progression of Ras-driven cancers.
582

Novel targets of eiF2 kinases determine cell fate during the integrated stress response

Baird, Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Eukaryotic cells rapidly modulate protein synthesis in response to environmental cues through the reversible phosphorylation of eukaryotic initiation factor 2 (eIF2α~P) by a family of eIF2α kinases. The eIF2 delivers initiator Met-tRNAiMet to the translational apparatus, and eIF2α~P transforms its function from a translation initiation factor into a competitive inhibitor of the guanine nucleotide exchange factor (GEF) eIF2B, which is responsible for the recycling of eIF2-GDP to the translationally-competent eIF2-GTP state. Reduced eIF2-GTP levels lower general protein synthesis, which allows for the conservation of energy and nutrients, and a restructuring of gene expression. Coincident with global translational control, eIF2α~P directs the preferential translation of mRNA encoding ATF4, a transcriptional activator of genes important for stress remediation. The term Integrated Stress Response (ISR) describes this pathway in which multiple stresses converge to phosphorylate eIF2α and enhance synthesis of ATF4 and its downstream effectors. In this study, we used sucrose gradient ultracentrifugation and a genome-wide microarray approach to measure changes in mRNA translation during ER stress. Our analysis suggests that translational efficiencies vary across a broad range during ER stress, with the majority of transcripts being either repressed or resistant to eIF2α~P, while a notable cohort of key regulators are subject to preferential translation. From this latter group, we identify IBTKα as being subject to both translational and transcriptional induction during eIF2α~P in both cell lines and a mouse model of ER stress. Translational regulation of IBTKα mRNA involves the stress-induced relief of two inhibitory uORFs in the 5’-leader of the transcript. Also identified as being subject to preferential translation is mRNA encoding the bifunctional aminoacyl tRNA synthetase EPRS. During eIF2α~P, translational regulation of EPRS is suggested to occur through the bypass of a non-canonical upstream ORF encoded by a CUG start codon, highlighting the diversity by which upstream translation initiation events can regulate expression of a downstream coding sequence. This body of work provides for a better understanding of how translational control during stress is modulated genome-wide and for the processes by which this mode of gene regulation in the ISR contributes to cell fate.
583

Tropomyosin Phosphorylation in Cardiac Health and Disease

Sheikh, Hajer Nisar 11 August 2009 (has links)
No description available.
584

FUNCTIONAL ROLES FOR POST-TRANSLATIONAL MODIFICATIONS OF t-SNARES IN PLATELETS

Zhang, Jinchao 01 January 2016 (has links)
Platelets affect vascular integrity by secreting a host of molecules that promote hemostasis and its sequela. Given its importance, it is critical to understand how platelet exocytosis is controlled. Post-translational modifications, such as phosphorylation and acylation, have been shown to affect signaling pathways and platelet function. In this dissertation, I focus on how these modifications affect the t-SNARE proteins, SNAP-23 and syntaxin-11, which are both required for platelet secretion. SNAP-23 is regulated by phosphorylation. Using a proteoliposome fusion assay, I demonstrate that purified IκB Kinase (IKK) phosphorylated SNAP-23, which increased the initial rates of SNARE-mediated liposome fusion. SNAP-23 mutants containing phosphomimetics showed enhanced initial fusion rates. These results, combined with previous work in vivo, confirm that SNAP-23 phosphorylation is involved in regulating membrane fusion, and that IKK-mediated signaling contributes to platelet exocytosis. To address the role(s) of acylation, I sought to determine how syntaxin-11 and SNAP-23 are associated with plasma membrane. Using metabolic labeling, I showed that both proteins contain thioester-linked acyl groups which turn over in resting cells. Mass spectrometry mapping showed that syntaxin-11 is modified on C275, 279, 280, 282, 283 and 285, while SNAP-23 is modified on C79, 80, 83, 85, and 87. To probe the effects of acylation, I measured ADP/ATP release from platelets treated with the acyl-transferase inhibitor, cerulenin, or the thioesterase inhibitor, palmostatin B. Cerulenin pretreatment inhibited t-SNARE acylation and platelet function while palmostatin B had no effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin suggesting that maintaining the acylation state of platelet proteins is important for their function. Thus my work indicates that the enzymes controlling protein acylation could be valuable targets for modulating platelet exocytosis in vivo.
585

Absorption spectroscopy and surface enhanced vibrational techniques for monitoring dephosphorylation and phosphorylation reactions in model compounds

Eguzozie, Kennedy Uchenna 06 1900 (has links)
Mechanistic aspects of phosphorylation, dephosphorylation, pyrophosphorylation and depyrophosphorylation reactions that mimic phosphorylases, dephosphorylases, pyrophosphorylases and depyrophosphorylases have been studied in the biologically important middle pH region. The different systems monitored are; (a) the reactions between [{CoN4(OH)(OH2)}]2+ and [HPO4]- for 1:1, 2:1 and 3:1 [{CoN4(OH)(OH2)}]2+ to [HPO4]2- ratios. (b) the reactions between [{CoN4PO4] and [O2NC6H4O]- (abbreviated as NP-) for 1:1, 2:1 and 3:1 [{CoN4PO4] to [O2NC6H4O]- ratios. (c) the reactions between [{CoN4(OH)(OH2)}]2+ and [O2NC6H4PO4]2- (abbreviated as NPP2-) for 1:1, 2:1 and 3:1 [{CoN4(OH)(OH2)}]2+ to [O2NC6H4PO4]2- ratios. (d) the reactions between [{CoN4(OH)(OH2)}]2+ and [H2P2O7]2- for 1:1, 2:1 and 3:1 [{CoN4(OH)(OH2)}]2+ to [H2P2O7]2- ratios. (e) the reactions between [{CoN4P2O7}]- and [O2NC6H4O]- for 1:1, 2:1 and 3:1 [{CoN4P2O7}]- to [O2NC6H4O]- ratios. Significant phosphorylation was noted for systems containing 1:1 molar ratio [{CoN4PO4] and [O2NC6H4O]-. Enhanced phosphorylation was depicted for system containing 1:1 molar ratio of [{CoN4(OH)}2PO4]+ and [O2NC6H4O]-. Pyrophosphorylation was noted for reactions of 1:1 molar ratio of [{CoN4P2O7}]- and [O2NC6H4O]-. The rate of pyrophosphorylation was substantially reduced for systems that were 2:1 in molar ratio of [{CoN4P2O7}]- and [O2NC6H4O]-. No appreciable pyrophosphorylation was noted for systems, which has a 3:1 molar ratio of [{CoN4P2O7}]- and [O2NC6H4O]-. Specific mechanistic features and the possible roles metal ions play in phosphorylase, dephosphorylase and pyrophosphorylase are highlighted from results of UV-Visible spectroscopy, 31P {1H} NMR spectroscopy and Surface Enhanced Raman Scattering (SERS) studies / Chemistry / D.Phil. (Chemistry)
586

Type III Secretion Chaperones in Chlamydia trachomatis: Identification of a New Effector Protein and Insights into Hierarchical Protein Secretion during Early Infection

Chen, Yi-Shan January 2014 (has links)
<p>Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Although the temporal manner in which effectors are secreted is important for the proper manipulation of host cell functions, the mechanism remains a mystery. In this study, we provide several lines of evidence that T3S chaperones may impart coherence to effector secretion. In addition, we identified a new early T3S effector in Chlamydia. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. By defining proteins that associate with the three most abundant T3S chaperones, Slc1, Scc2 and Mcsc in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry, we identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form stable complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses and lack of C. trachomatis-induced morphological changes. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.</p> / Dissertation
587

An investigation of the role of phosphorylation at Ser211 of the glucocorticoid receptor in ligand-specific transcriptional regulation

Stubsrud, Elisabeth 12 1900 (has links)
Thesis (MSc (Biochemistry))--University of Stellenbosch, 2005. / Endogenous glucocorticoids (GCs) modulate many physiological functions in the human body and synthetic GCs are the most effective therapy in the treatment of inflammation, autoimmune and endocrine disorders. However, the long-term usage of synthetic GCs is associated with severe side-effects. GCs mediate their effects through the ligand-dependent transcription factor, the glucocorticoid receptor (GR), either by causing an increase (transactivation) or a decrease (transrepression) in gene transcription. The bioactivity of a ligand in GR-mediated transcriptional regulation is established by a transcriptional doseresponse curve, where the potency (EC50 value) and the efficacy (maximal response) of the ligand are determined. A central question is how different GR ligands elicit their differential physiological responses for the same gene in the same cell. The main aim of this thesis is to investigate if the phosphorylation of GR at serine 211 (Ser211) correlates with the potency and/or efficacy of a particular ligand in transactivation and transrepression of gene expression.
588

Investigations of the role of myomegalin in the phosphorylation of cardiac myosin binding protein C

Uys, Gerrida Mathilda 12 1900 (has links)
Thesis (PhD (Biomedical Sciences))--University of Stellenbosch, 2010. / Bibliography / ENGLISH ABSTRACT: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disorder worldwide. The disease is characterized by extreme variability in the amount of hypertrophy that develops in different patients in response to sarcomeric protein-encoding gene mutations. The underlying defect in HCM is altered contractility of the sarcomere, primarily due to a defective sarcomere. Although numerous disease-causing genes have been identified for HCM, the factors that modify the amount of hypertrophy that develops in a given person are still unknown, it can be hypothesized that molecules that affect contractility can act as modifiers of the hypertrophic signal, and therefore influence the development of hypertrophy. Cardiac contractility is regulated by dynamic phosphorylation of proteins within the sarcomere by kinases such as cAMP-activated protein kinase A (PKA). Because speed and energy efficiency of cardiac muscle contraction has to be regulated in order to match the body’s needs, PKA is anchored close to its targets by A-kinase anchoring proteins (AKAPs) to enable spatio-temporal control of phosphorylation. Cardiac myosin binding protein-C (cMyBPC) and cardiac troponin I (cTNI) are HCM-causing sarcomeric proteins which regulate contractility in response to PKA phosphorylation. In a previous study, our laboratory identified a phosphodiesterase 4D-interacting protein as ligand of the N-terminal of cMyBPC via a yeast-two-hybrid (Y2H) cardiac library screen. This protein is also known in the literature as myomegalin (MMGL) isoform 4. Because phosphodiesterases and PKA are sometimes anchored by the same anchoring protein (AKAP), we hypothesized that MMGL isoform 4 acts as an AKAP by anchoring PKA to the phosphorylatable N-terminal of cMyBPC, and tested this by direct protein-protein interaction analyses in a yeast-based system. The MMGL cDNA was cloned into a bait vector, which was directly assessed for interaction with two distinct PKA regulatory-subunit preys. We further investigated the function of MMGL itself by using the Y2H bait to screen a cardiac cDNA library for novel MMGL interactors. All the prey clones identified via these Y2H analyses were subsequently sequenced to determine their identity. Based on their identities and subcellular localization, all putative Y2H MMGL-prey interactions were further assessed by additional, separate biochemical techniques viz. in vivo co-immunoprecipitation and in vivo 3D co-localization. The interactions between MMGL and its known PKA-phosphorylatable sarcomeric ligands were also investigated under conditions of β-adrenergic stress, by quantitatively measuring levels of co-localization before and upon addition of the β-adrenergic agonist isoproterenol. Furthermore, in order to evaluate the role of MMGL in cMyBPC phosphorylation, we assessed the expression of the different phosphorylation isoforms of cMyBPC, with and without β-adrenergic stimulation, in the context of siRNA-mediated MMGL knockdown. We further hypothesized that MMGL and PKA may serve as modifiers of the hypertrophic phenotype. This was tested by conducting a single nucleotide polymorphism (SNP) genotyping study of the genes encoding MMGL and the regulatory subunits of PKA viz. PDE4DIP, PRKAR1A and PRKAR2A, respectively, and comparing genotypic data with clinical phenotypic traits in a family-based association study. A panel of 353 individuals, including genetically and clinically affected as well as unaffected HCM individuals, was identified. All these individuals were screened for the presence or absence of all three South African HCM founder mutations, and blood was collected and DNA extracted. Genotypes at multiple SNPs in each gene were determined by subjecting the DNA samples to TaqMan® allelic discrimination technology. Statistical analysis using quantitative transmission disequilibrium testing (QTDT) was done in order to establish whether the difference in genotype in these three genes might have an effect on HCM phenotype. Our results showed that MMGL interacted with both PKA regulatory subunits as well as with other cardiac proteins that are PKA targets, including the sarcomeric protein cTNI. It was confirmed that two regulatory subunits of PKA (PRKAR1A and PRKAR2A), cardiac ankyrin repeat protein (CARP), copper metabolism gene MURR1 domain 4 (COMMD4), α-enolase (ENO1), β-enolase (ENO3) and cTNI are novel interactors of MMGL. In order to classify a protein as an AKAP, interaction with one of PKA’s regulatory subunits are prerequisite; MMGL showed interaction with both, confirming our hypothesis of MMGL being an AKAP, moreover, classifying it as a novel dual-specific sarcomeric AKAP. The identities of the AKAPs involved in the phosphorylation of cMyBPC and cTNI had been unknown; our results indicate that MMGL is the AKAP involved in the phosphorylation of both these PKA targets. We also showed that quantitatively more interaction occurs between MMGL and its sarcomeric ligands cMyBPC and cTNI under β-adrenergic stress. This implicates that under elevated cAMP levels, PKA is dynamically recruited by MMGL to the PKA targets cMyBPC and cTNI, presumably to mediate cardiac stress responses and leading to increased cardiac contractility. Furthermore, siRNA-mediated knockdown of MMGL lead to a reduction of cMyBPC levels under conditions of β-adrenergic stress, indicating that MMGL-assisted phosphorylation is requisite for protection of cMyBPC against proteolytic cleavage. The SNP modifier study indicated that one variant in PDE4DIP (rs1664005) showed strong association with numerous clinical hypertrophy traits, including maximal interventricular septum thickness, as well as a number of other composite score traits. Two variants in PRKAR1A (rs11651687 and rs3785906) also showed strong association with some of these clinical hypertrophy traits. These results therefore suggest that variants in these two genes may act as modifiers of the HCM phenotype. In conclusion, this study ascribes a novel function to MMGL isoform 4: it meets all criteria for classification as an AKAP and appears to be involved in the phosphorylation of cMyBPC as well as cTNI; hence MMGL is likely to be an important component in the regulation of cardiac contractility, and by extension, in the development of hypertrophy. This has further implications for understanding the patho-aetiology of mutations in cMyBPC and cTNI, and raises the question of whether MMGL might itself be considered a candidate HCM-causing factor. / AFRIKAANSE OPSOMMING: Hipertrofiese kardiomiopatie (HKM) is die mees algemeenste oorerflike hartspier siekte wêreldwyd. Die siekte word gekenmerk deur die uiterste variasie in die hoeveelheid hipertrofie wat in verskillende pasiënte ontwikkel as gevolg van sarkomeriese proteïen-koderende mutasies. Die onderliggende gebrek in HKM is geaffekteerde kontraktiliteit van die sarkomeer, hoofsaaklik as gevolg van ‘n gebrekkige sarkomeer. Alhoewel daar verskeie siekte-veroorsakende gene vir HKM geïdentifiseer is, bly die faktore wat die hoeveelheid hipertrofie in ‘n gegewe persoon modifiseer, onbekend. Daar kan dus gehipotiseer word dat molekules wat kontraktiliteit beïnvloed as modifiseerders van die hipertrofiese sein kan optree, en dus die ontwikkeling van hipertrofie beïnvloed. Hartspier kontraktiliteit word gereguleer deur die dinamiese fosforilasie van proteïene binne die sarkomeer deur kinases soos bv. cAMP-geaktiveerde proteïen kinase A (PKA). Die spoed en energie doeltreffendheid van hartspier kontraksie moet gereguleer word om by die liggaam se behoeftes aan te pas; dus word PKA naby sy teikens deur A-kinase anker proteïene (AKAPs) geanker om sodoende die beheer van fosforilasie beide in die korrekte area sowel as tydsduur te reguleer. Kardiale miosien-bindingsproteïen C (cMyBPC), asook kardiale troponien I (cTNI), is beide HKM-veroorsakende sarkomeriese proteïene wat kontraktiliteit beheer deur middel van fosforilasie deur PKA. In ‘n vorige studie in ons laboratorium is ‘n fosfodiesterase 4D-interaksie proteïen as bindingsgenoot van die N-terminaal van cMyBPC geïdentifiseer deur middel van ‘n gis-twee-hibried (G2H) kardiale biblioteek sifting. In die literatuur staan dié proteïen ook bekend as miomegalin (MMGL) isovorm 4. Fosfodiesterases en PKA word soms deur dieselfde anker proteïen (AKAP) geanker, dus het ons hipotiseer dat MMGL isovorm 4 ook as AKAP kan optree deur PKA aan die fosforileerbare N-terminaal van cMyBPC te anker. Die hipotese is getoets deur middel van direkte proteïen-proteïen interaksie analises in ‘n gis-gebaseerde sisteem. Die MMGL cDNA was in ‘n jag-plasmied gekloneer, wat toe direk ge-evalueer is vir interaksie met twee verskillende PKA regulatoriese-subeenheid prooi-plasmiede. Die funksie van MMGL self is verder ondersoek deur die G2H jag-plasmied te gebruik om ‘n kardiale cDNA biblioteek te sif, sodoende om nuwe MMGL bindingsgenote te identifiseer. Alle prooi klone wat deur dié G2H analises geïdentifiseer is, was daarna onderworpe aan DNA-volgorde bepaling om hul identiteit vas te stel. Afhangende van hul identiteite en subsellulêre lokalisering, is alle moontlike G2H MMGL-prooi interaksies verder ge-evalueer deur bykomende, afsonderlike biochemiese tegnieke viz. in vivo ko-immunopresipitasie asook in vivo 3D ko-lokalisering. Die interaksie tussen MMGL en sy bekende PKA-gefosforileerde sarkomeriese bindingsgenote was ook ondersoek onder kondisies van β-adrenergiese stres, deur kwantitatief die vlakke van ko-lokalisering te meet voor en na byvoeging van die β-adrenergiese agonis isoproterenol. Om verder die rol van MMGL in cMyBPC fosforilasie te ondersoek, het ons die uitdrukking van die verskillende fosforilasie isovorms van cMyBPC, met en sonder β-adrenergiese stimulasie, in die konteks van siRNA-bemiddelde MMGL uitklop, bepaal. Ons het verder hipotiseer dat MMGL en PKA as modifiseerders van die hipertrofiese fenotipe mag dien. Dit is getoets deur ‘n enkel nukleotied polimorfisme (SNP) genotiperings studie van die gene wat kodeer vir MMGL en die regulatoriese subeenhede van PKA, viz. PDE4DIP, PRKAR1A en PRKAR2A, en daarna dié genotipiese data met kliniese fenotipiese data te vergelyk in ‘n familie-gebaseerde assosiasie studie. ‘n Paneel van 353 individue wat genetiese en klinies geaffekteerde, sowel as ongeaffekteerde HKM individue insluit, was geidentifiseerd. Alle individue was ondersoek vir die aanwesigheid of afwesigheid van al drie Suid-Afrikaanse HKM stigter mutasies; bloedmonsters is gekollekteer en DNA uitgetrek. Die genotipes van veelvoudige SNPs in elke geen was bepaal deur die DNA monsters aan TaqMan® alleliese diskriminasie tegnologie met behulp van die ABI TaqMan® Validated SNP Genotyping Assays sisteem te analiseer. Statistiese analises deur middel van kwantitatiewe transmissie disekwilibrium toetse (QTDT) was gedoen om te bepaal of die verskil in genotipe in hierdie drie gene ‘n effek op HKM fenotipe het. Ons resultate het gewys dat MMGL interaksie toon met beide PKA regulatoriese subeenhede, sowel as met ander kardiale proteïene wat ook PKA teikens is, insluitende die sarkomeriese proteïen cTNI. Dit is bevestig dat die twee regulatoriese subeenhede van PKA (PRKAR1A en PRKAR2A), kardiale ankyrin herhaal proteïen (CARP), koper metabolisme geen MURR1 domein 4 (COMMD4), α-enolase (ENO1), β-enolase (ENO3) en cTNI almal nuwe bindingsgenote van MMGL is. ‘n Proteïen moet interaksie met een van die regulatoriese subeenhede van PKA toon om as AKAP geklassifiseer te word; MMGL het interaksie met beide getoon, wat ons hipotese bevestig dat MMGL ‘n AKAP is, asook dat MMGL as ‘n nuwe dubbel-spesifieke sarkomeriese AKAP geklassifiseer kan word. Die identiteite van die AKAPs wat betrokke is in die fosforilasie van cMyBPC en cTNI was onbekend tot nou; ons resultate wys dat MMGL die AKAP is wat betrokke is in die fosforilasie van beide hierdie PKA teikens. Ons wys ook dat daar kwantitatief meer interaksie plaasvind tussen MMGL en sy sarkomeriese bindingsgenote cMyBPC en cTNI onder kondisies van β-adrenergiese stres. Dit impliseer dat PKA dinamies verwerf word deur MMGL, onder verhoogde vlakke van cAMP, tot by die PKA teikens cMyBPC en cTNI, moontlik om kardiale stres-response te bemiddel en dus te lei na verhoogde spierkontraksie. Verder het siRNA-bemiddelde uitklop van MMGL gelei na ‘n vermindering van cMyBPC vlakke onder kondisies van β-adrenergiese stres. Dit dui aan dat fosforilasie deur middel van MMGL-bystand ‘n voorvereiste is vir beskerming van cMyBPC teen proteolise. Die SNP modifiseerder studie het gewys dat een variant in PDE4DIP (rs1664005) sterk assosiasie toon met verskeie kliniese hipertrofie kenmerke, insluitende maksimale interventrikulêre septum diktheid, sowel as ander van die saamgestelde telling kenmerke. Twee variante in PRKAR1A (rs11651687 en rs3785906) het ook sterk assosiasie getoon met verskeie van die kliniese hipertropfie kenmerke. Hierdie resultate dui dus daarop dat variante in hierdie twee gene as modifiseerders van die HKM fenotipe mag optree. In samevatting skryf hierdie studie ‘n nuwe funksie aan MMGL isovorm 4 toe: dit voldoen aan alle vereistes om as AKAP geklassifiseer te word en dit blyk of dit betrokke is in die fosforilasie van cMyBPC en cTNI; dus is MMGL waarskynlik ‘n belangrike komponent in die regulasie van hartspier sametrekking, en dus met uitbreiding, in die ontwikkeling van hipertrofie. Dit hou verdere implikasies in om die siekte-oorsaak van mutasies in cMyBPC en cTNI te verstaan, en stel die vraag of MMGL self as ‘n kandidaat HKM-veroorsakende geen kan beskou word. / Medical Research Council / University of Stellenbosch / Prof Paul van Helden
589

Επίδραση της χρόνιας ντοπαμινεργικής εκφύλισης στη φωσφορυλίωση των υποδοχέων γλουταμινικού οξέος : Μελέτη σε γενετικό μοντέλο παρκινσονισμού / Effect of chronic dopaminergic degeneration on glutamate receptor phosphorylation : Study on genetic model of parkinsonism

Κουτσοκέρα, Μαρία 09 December 2013 (has links)
Ο μυς weaver αποτελεί ένα γενετικό ζωϊκό μοντέλο της νόσου Parkinson που χαρακτηρίζεται από προοδευτική εκφύλιση των κυττάρων της μελαινοραβδωτής ντοπαμινεργικής οδού. Η μεταβολή της γλουταμινεργικής διαβίβασης στο κύκλωμα των βασικών γαγγλίων ως απόκριση στη ντοπαμινεργική εκφύλιση έχει προταθεί ότι εμπλέκεται στην παθοφυσιολογία της νόσου Parkinson. Οι ιδιότητες των υποδοχέων του γλουταμινικού εξαρτώνται από τη σύνθεση των υπομονάδων τους και τη φωσφορυλίωσή αυτών, καθώς και από τη σύνθεση του πρωτεϊνικού συμπλόκου που σχηματίζεται ενδοκυττάρια μετά την ενεργοποίηση των υποδοχέων, μέρος του οποίου είναι η ασβεστιοεξαρτώμενη κινάση της καλμοδουλίνης ΙΙ (CaMKII), ένα μόριο σημαντικό στη συναπτική πλαστικότητα. Στην παρούσα διατριβή μελετήσαμε, με την μέθοδο της ανοσοαποτύπωσης, σε ολικό ομογενοποίημα ραβδωτού μυών weaver και φυσιολογικών, τις αλλαγές που παρατηρούνται στην πρωτεϊνική έκφραση και φωσφορυλίωση των υπομονάδων των υποδοχέων του γλουταμινικού και της αCaMKII στις ηλικίες των 3 και 6 μηνών. Στην ηλικία των 3 μηνών αναδείχθηκε στατιστικά σημαντική αύξηση στους μύες weaver σε σχέση με τους φυσιολογικούς των πρωτεϊνικών επιπέδων των υπομονάδων GluN2A και GluN2B του υποδοχέα NMDA κατά 74% και 92% και της υπομονάδας GluA1 του υποδοχέα AMPA κατά 108%. Στην ηλικία των 6 μηνών, δεν ανευρέθησαν αλλαγές στο ραβδωτό των μυών weaver στα επίπεδα έκφρασης των GluN2A και GluA1, ενώ παρατηρήθηκε στατιστικά σημαντική αύξηση της GluN2B κατά 21%. Επιπλέον, στην ηλικία των 3 μηνών αναδείχθηκε στατιστικά σημαντική αύξηση των επιπέδων φωσφορυλίωσης της GluN2B στη σερίνη 1303 κατά 40% και της GluA1 στις σερίνες 831 και 845 κατά 40% και 38%, αντίστοιχα, στους μύες weaver σε σχέση με τους φυσιολογικούς, ενώ στην ηλικία των 6 μηνών αύξηση της φωσφορυλιωμένης GluN2B κατά 22%. Επιπρόσθετα, τα αποτελέσματά μας ανέδειξαν στο ραβδωτό των μυών weaver στατιστικά σημαντική αύξηση της φωσφoρυλίωσης της αCaMKII στη θρεονίνη 286 κατά 176%, ενώ τα επίπεδα της ολικής CaMKII δεν παρουσίασαν στατιστικά σημαντική διαφορά είτε στους 3 είτε στους 6 μήνες. Τα αποτελέσματα μας υποδεικνύουν ότι διακριτοί βαθμοί εκφύλισης των ντοπαμινεργικών νευρώνων επηρεάζουν με διαφορετικό τρόπο την έκφραση και φωσφορυλίωση των υποδοχέων γλουταμινικού και της αCaMKII στο ραβδωτό. Τα ευρήματα σε αυτό το γενετικό παρκινσονικό μοντέλο προτείνουν ότι η γλουταμινεργική διαβίβαση στο ραβδωτό παίζει πιθανά σημαντικό ρόλο στη συναπτική πλαστικότητα και στην κινητική συμπεριφορά, που έπονται της σταδιακής και χρόνιας έλλειψης ντοπαμίνης στη νόσο Parkinson, με βιοχημικά επακόλουθα πέρα από αυτά που παρατηρούνται στα οξέα τοξικά μοντέλα. / Weaver mutant mouse is a valuable tool to further our understanding of Parkinson’s disease (PD) pathogenesis since dopaminergic neurons of the nigro-striatal pathway undergo spontaneous and progressive cell death. Abnormalities in striatal glutamate transmission as a response to dopaminergic degenaration have been associated with the pathophysiology of Parkinson disease. The physiological properties of glutamate receptors depend on their subunit composition and phosphorylation along with the composition of the protein complex formed downstream of receptor activation, where α-subunit of calcium–calmodulin-dependent protein kinase II (αCaMKII), a molecule important to synaptic plasticity, participates. In the present study, using immuoblotting in total striatal homogenate, we investigated the changes in protein expression and phosphorylation of glutamate receptor subunits and αCaMKII at the end of the third and sixth postnatal month. We found increased expression levels of GluN2A and GluN2B subunits of NMDA receptors and GluA1 subunit of AMPA receptors by 74%, 92% and 108% in the 3-month-old weaver striatum compared to control. In the 6-month-old weaver striatum, no changes were detected in GluN2A and GluA1 expression levels, whereas GluN2B showed a 21% statistically significant increase. Our results also indicated increased phosphorylations of GluN2B at serine 1303 by 40% and GluA1 at serines 831 and 845 by 40% and 38% in the 3-month-old and increased GluN2B phosphorylation by 22% in the 6-month-old weaver striatum compared to control. Furthermore, our results showed increased pCaMKIIThr286 phosphorylation by 176% in the 6 month-old weaver striatum, while total CaMKII protein levels were not altered at either 3- or 6-month-old weaver. Our results indicate that distinct degrees of DA neuron degeneration differentially affect expression and phosphorylation of striatal glutamate receptors and αCaMKII. Findings on this genetic parkinsonian model suggest that striatal glutamatergic signaling may play an important role in synaptic plasticity and motor behavior that follow progressive and chronic dopamine depletion in PD with biochemical consequences beyond those seen in acute toxic models.
590

Role of the Ca2+ / calmodulin-dependent protein kinase II pathway in the cardioprotective effect of estrogen

Ma, Yan, 馬妍 January 2008 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy

Page generated in 0.0225 seconds