• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 612
  • 203
  • 70
  • 53
  • 26
  • 25
  • 19
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 4
  • Tagged with
  • 1237
  • 305
  • 199
  • 192
  • 185
  • 128
  • 123
  • 118
  • 113
  • 92
  • 82
  • 76
  • 70
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Protein Post Translational Modifications in Human Diseases: Bacterial Glycosylation Profiling by Peptide Microarray / Protein Phosphorylation Analysis in High Risk Neuroblastoma

January 2014 (has links)
abstract: ABSTRACT Post Translational Modifications (PTMs) are a series of chemical modifications with the capacity to expand the structural and functional repertoire of proteins. PTMs can regulate protein-protein interaction, localization, protein turn-over, the active state of the protein, and much more. This can dramatically affect cell processes as relevant as gene expression, cell-cell recognition, and cell signaling. Along these lines, this Ph.D. thesis examines the role of two of the most important PTMs: glycosylation and phosphorylation. In chapters 2, 3 and 4, a 10,000 peptide microarray is used to analyze the glycan variations in a series lipopolysaccharides (LPS) from Gram negative bacteria. This research was the first to demonstrate that using a small subset of random sequence peptides, it was possible to identify a small subset with the capacity to bind to the LPS of bacteria. These peptides bound to LPS not only in the solid surface of the array but also in solution as demonstrated with surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and flow cytometry. Interestingly, some of the LPS binding peptides also exhibit antimicrobial activity, a property that is also analyzed in this work. In chapters 5 and 6, the role of protein phosphorylation, another PTM, is analyzed in the context of human cancer. High risk neuroblastoma, a very aggressive pediatric cancer, was studied with emphasis on the phosphorylations of two selected oncoproteins: the transcription factor NMYC and the adaptor protein ShcC. Both proteins were isolated from high risk neuroblastoma cells, and a targeted-directed tandem mass spectrometry (LC-MS/MS) methodology was used to identify the phosphorylation sites in each protein. Using this method dramatically improved the phosphorylation site detection and increased the number of sites detected up to 250% in comparison with previous studies. Several of the novel identified sites were located in functional domain of the proteins and that some of them are homologous to known active sites in other proteins of the same family. The chapter concludes with a computational prediction of the kinases that potentially phosphorylate those sites and a series of assays to show this phosphorylation occurred in vitro. / Dissertation/Thesis / Doctoral Dissertation Biochemistry 2014
752

O papel da fosforilação de maspina em resíduos de tirosina / Rolle of maspin phosphorylation on tyrosine residues

Mariana Tamazato Longhi 30 October 2012 (has links)
Maspina (mammary serpin) foi identificada em 1994 como uma serpina (serine protease inhibitor) que apresenta atividade de supressão tumoral. Foi classificada como uma serpina devido à homologia na sequência de aminoácidos, porém, maspina não apresenta atividade de inibição de serina proteases. Entre os efeitos biológicos de maspina estão a modulação da adesão, a inibição do crescimento e a invasão tumoral, a inibição da angiogênese, o efeito pró-apoptótico e o controle da resposta ao stress oxidativo, propriedades que contribuem para supressão tumoral. Esta diversidade de funções se reflete nos inúmeros ligantes de maspina e na sua localização subcelular, já que é encontrada na membrana plasmática, no citoplasma, núcleo e mitocôndrias. A localização subcelular de maspina guarda importante relação com sua função, já que foi demonstrado que sua localização nuclear está correlacionada com bom prognóstico em diversos tumores e seu efeito supressor de tumor foi observado somente quando maspina está localizada no núcleo. Entre os ligantes de maspina estão a HDAC1, IRF6, GST, HSP90 e HSP70, β1 integrina, uPAR e colágeno tipo I e III. O mecanismo molecular envolvido na regulação dessas atividades não foi elucidado, e até o momento, somente um gene e uma proteína de maspina foram descritos, desta forma alterações pós-traducionais devem estar envolvidas na regulação dessas atividades. Com objetivo de verificar se há modificações pós-traducionais em maspina, utilizamos células MCF10A, que expressam grande quantidade dessa proteína, e submetemos seu extrato proteico à separação por gel bidimensional seguido de western blot. Identificamos quatro formas de maspina com a mesma massa molecular (42kDa), mas pontos isoelétricos distintos. Três destas formas são sensíveis ao tratamento com fosfatase ácida, o que sugere que estas sejam fosforiladas. Utilizamos ainda peroxidovanadato de sódio, um potente inibidor de tirosina fosfatase para investigar o papel da fosforilação de maspina em resíduos de tirosina. Através de western blot e imunofluorescência, observamos que o tratamento das células com o inibidor resultou no aumento dos níveis celulares de maspina assim como no seu acúmulo no citoplasma. Deste modo, concluímos que existem três diferentes fosfoformas de maspina em células MCF10A e ainda a inibição de tirosinas fosfatases aumentam os níveis de maspina e resultam no acúmulo da proteína no citoplasma. Esses resultados sugerem que a fosforilação pode estar envolvida na localização subcelular de maspina e na regulação dos seus níveis proteicos na célula. / Maspin (mammary serpin) was identified in 1994 as a serpin (serine protease inhibitor) which presents tumor suppressor activity. It was classified as a serpin due to its homology in amino acids sequence; however, maspin doesn\'t exhibit serine protease inhibition activity. Among maspin biological effects are modulation of cell adhesion, inhibition of tumor growth, invasion and angiogenesis, a pro-apoptotic effect and control of oxidative stress response, properties which contribute to tumor suppression. This functional diversity reflects maspin numerous ligands and its subcellular localization, since it is found on the plasma membrane, in the cytoplasm, nucleus and in mitochondria. Maspin subcellular localization is closely related to its function, as its nuclear localization correlates with good prognostic in several tumors and maspin tumor suppressor activity is only observed when it is located in the nucleus. Among maspin ligands are histone H1 deacetylase, IRF6, GST, HSP90 e HSP70, β1 integrin, uPAR and type I and III collagen. The molecular mechanisms involved in the regulation of maspin biological activities are poorly understood. So far, only one gene and one protein have been assigned to maspin, so posttranslational modification should be involved. In order to verify posttranslational modification in maspin, we utilized MCF10A cells, which express great amount of this protein, and we submitted its proteic extract to 2D-SDS-PAGE followed by western blot. We identified four maspin forms with the same molecular mass (42kDa), but different isoelectric point. Three of these forms are sensitive to acidic phosphatase treatment, suggesting that they are phosphorylated maspin forms. We also utilized sodium peroxovanadate, a potent tyrosine phosphatase inhibitor to investigate the role of maspin tyrosine phosphorylation. Through western blot and immunofluorescence analyses, we observed that cell treatment resulted in increase in maspin cellular levels as well as its cytoplasmic accumulation. Thus, we concluded that there are three diferente maspin phosphoforms in MCF10A cells and yet tyrosine phosphatase inhibition increases maspin levels and results in accumulation of the protein in the cytoplasm. These data suggest that phosphorylation may be involved in maspin subcellular localization and regulation of its protein levels in the cell.
753

MITOCHONDRIAL TRANSPLANTATION AFTER SPINAL CORD INJURY: EFFECTS ON TISSUE BIOENERGETICS AND FUNCTIONAL NEUROPROTECTION

Gollihue, Jenna L. 01 January 2017 (has links)
Contusion spinal cord injury (SCI) results in devastating life-long debilitation in which there are currently no effective treatments. The primary injury site presents a complex environment marked by subsequent secondary pathophysiological cascades involving excessive reactive oxygen and nitrogen species (ROS/RNS) production, glutamate-induced excitotoxicity, calcium dysregulation, and delayed neuronal apoptosis. Many of these cascades involve mitochondrial dysfunction, thus a single mitochondrial-centric therapy that targets a variety of these factors could be far reaching in its potential benefits after SCI. As such, this dissertation examines whether transplantation of exogenous mitochondria after SCI can attenuate secondary injury cascades to decrease the spread and severity of the injury. Our first experiment tested the dose-dependent effects of mitochondrial transplantation on the ability to maintain acute overall bioenergetics after SCI. We compared transplantation of mitochondria originating from two different sources-cultured PC12 cells or rat soleus leg muscle. 24 hours after injury, State III oxygen consumption rates were maintained to over 80% of sham levels when 100ug of mitochondria was transplanted, regardless of the origin of the mitochondria. Complex I enzyme activity assays corroborated our findings that the 100ug dosage gave optimal benefits compared to vehicle injection. We also analyzed the rostral-caudal distribution and cell-type colocalization of transplanted transgenically-labeled tGFP mitochondria after SCI. There were greater volumes and rostral-caudal spread of tGFP mitochondria at the 24 hour time point compared to 7 days post injection. tGFP mitochondria had the greatest propensity to colocalize with macrophages and pericytes. Colocalization was evident in endothelial cells, oligodendrocytes and astrocytes, though no such colabeling was present in neurons. Further, colocalization of tGFP was always greater at the 24 hour time compared to 48 hour or 7days post injection time points. These data indicate that there is a cell-type difference in incorporation potential of exogenous mitochondria which changes over time. Finally, we tested the effects of mitochondrial transplantation on long term functional recovery. Animals were injected with either vehicle, 100ug cell-derived mitochondria, or 100ug muscle-derived mitochondria immediately after contusion SCI. Functional analyses including BBB overground locomotor scale and von Frey mechanical sensitivity tests did not show any differences between treatment groups. Likewise, there were no differences in tissue sparing when mitochondria were transplanted compared to vehicle injections, though there were higher neuronal cell counts in tGFP mitochondria injected groups caudal of the injury site. These studies present the potential of mitochondrial transplantation for therapeutic intervention after SCI. While our acute measures do not correspond into long term recovery, we show that at 24 hours transplanted mitochondria do have an effect on bioenergetics and that they are taken into host cells. We believe that further investigation into caveats and technical refinement is necessary at this time to translate the evident acute bioenergetic recovery into long term functional recovery.
754

Molecular and cell phenotype changes in mitochondrial diseases

Annunen-Rasila, J. (Johanna) 05 June 2007 (has links)
Abstract The mitochondrial oxidative phosphorylation system (OXPHOS) generates energy but also deleterious reactive oxygen species (ROS). Changes in the cytoskeleton, composed mainly of microfilaments, microtubules and intermediate filaments, have been observed in OXPHOS deficiency. The 3243A>G point mutation in mitochondrial DNA (mtDNA) leads to mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), which is the most common mitochondrial disease. Interestingly, mitochondrial aberrations have been demonstrated in patients with a mutation in NOTCH3, the genetic cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Randomization of vimentin intermediate filament direction and length together with slower population growth was observed in myoblasts with 3243A>G, with no difference in the amount of apoptotic cell death. Upon complex IV inhibition (with or without the microtubule-depolymerizing compound nocodazole) or a lack of mtDNA (ρ0) in osteosarcoma cells the vimentin network collapsed perinuclearly, forming thick bundles, whereas complex I inhibition led to thinner vimentin network bundles. Furthermore, the amount of vimentin was increased in ρ0 cells. Mitochondria accumulated around the nucleus upon complex IV inhibition and in ρ0 cells. Analysis of the total proteome revealed that specific OXPHOS deficiencies led to changes in the expression of cytoskeletal proteins and proteins involved in apoptosis, OXPHOS, glycolysis and oxidative stress response. Muscle histochemical and genetic analysis showed ragged red fibres and cytochrome c oxidase-negative fibres to be associated with 5650G>A in a patient with R133C in NOTCH3 and 5650G>A in MTTA. Immunolabelling of cells with R133C and 5650G>A revealed a sparse tubulin network with asters and less abundant mitochondria by comparison with control cell lines. Comparison of nucleotide diversity between CADASIL pedigrees and controls showed increased mtDNA sequence variation in the CADASIL patients. Also maternal relatives in two CADASIL pedigrees differed from each other in their mtDNA. These findings suggest that defects in OXPHOS lead to selective changes in the vimentin network, which may have a role in the pathophysiology of mitochondrial diseases. They also suggest a relationship between NOTCH3 and mtDNA, and establish the pathogenicity of 5650G>A. The overall results emphasize that a deficiency in the energy converting system together with oxidative stress can lead to cytoskeletal changes.
755

Etudes des altérations fonctionnelles de la signalisation dépendante du récepteur à l’antigène dans les cellules B de la Leucémie Lymphoïde Chronique / Functional alterations of antigen-induced B cell Receptor signaling in B cells from Chronic Lymphocytic Leukemia patients

Quettier, Maude 03 February 2015 (has links)
Des altérations de la signalisation en aval du récepteur à l’antigène (BCR) jouent un rôle clé dans la physiopathologie de la Leucémie Lymphoïde Chronique (LLC). Notre laboratoire a montré qu’une stimulation antigénique ex-vivo des cellules B-LLC conduit à une survie et une migration cellulaires différentielles qui distingue deux groupes de patients. Sur la base de ces résultats, nous avons montré que l’avantage de survie cellulaire en réponse à une stimulation antigénique observé dans un groupe est dépendant 1) d’un seuil imposé par les niveaux d’expression des effecteurs précoces (BCR, Syk et Zap70), de la capacité des cellules leucémiques à répondre en termes de phosphorylation de Syk, d’activation de la PLCƳ2, de mobilisation calcique et d’activation du facteur de transcription NFAT2 ; l’activation de la voie BCR/NFAT mesurée par la survie des cellules B-LLC ex-vivo étant corrélée à la survie globale des patients ; 2) de l’augmentation des niveaux de phosphorylation globale et spécifique de Syk, de la distribution subcellulaire de phospho-Syk, de la capacité de Syk à interagir avec des effecteurs positifs et négatifs et à les activer. De plus, notre étude sur la diminution de la migration des cellules B de LLC en réponse à une stimulation du BCR montre qu’elle dépend du taux d’internalisation du CXCR4 qui est régulé par l’activation des PI3Ks situées en amont des PKDs ; ces dernières activées phosphorylent le CXCR4 qui est alors internalisé. L’ensemble de ces données nous a permis de mieux définir les mécanismes moléculaires sous-jacents à une survie accrue et à une migration diminuée des cellules BLLC en réponse à une stimulation antigénique, de mettre en évidence d’éventuels biomarqueurs fonctionnels de stratification (pSyk et pPLCƳ2), de pointer de potentielles cibles thérapeutiques (NFATs et PKDs) et d’expliquer en partie l’action de drogues, comme le Fostamatinib et l’Idelalisib, utilisées en thérapie dans la LLC. / Altered B-cell antigen receptor (BCR) signaling pathways play a key role in chronic lymphocytic leukemia(CLL) pathophysiology. Our lab has previously shown that ex-vivo antigenic stimulation of CLL-B cells led todifferential cell survival and cell migration, which allowed the distinction between two groups of patients. Basedon these results, we evidenced that the cell survival advantage in response to BCR engagement from one groupdepends on 1) a critical threshold mediated by the early effector expression levels (BCR, Syk et Zap70), a BCR competency of the leukemic cells translated by Syk phosphorylation, PLCƳ2 activation, intracellular Ca2+mobilization and the transcription factor NFAT2 activation; this activated BCR/NFAT signaling cascade, which is reflected by the ex-vivo measurement of CLL cell survival, was correlated to the overall survival from CLLpatients; 2) increased levels of global and specific Syk phosphorylation, phospho-Syk subcellular distribution, Sykability to interact with positive and negative effectors and to activate them. Moreover, study of BCR stimulation mediated decreased migration in CLL B cells showed that it relied on CXCR4 internalization levels that were regulated by activated PI3Ks acting upstream of the PKDs; activation of the latters allowed CXCR4 phosphorylation and then its endocytosis. Altogether, these data allowed us to better understand the molecular mechanisms underlying the survival advantage and the decreased migration of CLL B cells in response to antigenic stimulation, to evidence eventual functional biomarkers of stratification (pSyk and pPLCƳ2), to point out potential therapeutic targets (NFATs and PKDs), and to partially explain how Fostamatinib and Idelalisib function as therapeutic drugs in CLL.
756

Human DNA polymerase ε:expression, phosphorylation and protein-protein interactions

Tuusa, J. (Jussi) 27 November 2001 (has links)
Abstract DNA replication is a process in which a cell duplicates its genome before cell division, and must proceed accurately and in organized manner to guarantee maintenance of the integrity of the genetic information. DNA polymerases are enzymes that catalyse the synthesis of the new DNA strand by utilizing the parental strand as a template. In addition to chromosomal replication, DNA synthesis and therefore DNA polymerases are also needed in other processes like DNA repair and DNA recombination. The DNA polymerase is an essential DNA polymerase in eukaryotes and is required for chromosomal DNA replication. It has also been implicated in DNA repair, recombination, and in transcriptional and cell cycle control. The regulation of the human enzyme was explored by analysing its expression, phosphorylation and protein-protein interactions. Expression of both the A and B subunits of the human DNA polymerase ε was strongly growth-regulated. After serum-stimulation of quiescent fibroblasts, the steady-state mRNA levels were up-regulated at least 5-fold. In actively cycling cells, however, the steady-state mRNA and protein levels fluctuated less than 2-fold, being highest in G1/S phase. The promoter of the B subunit gene was analysed in detail. The 75 bp core promoter was essentially dependent on the Sp1 transcription factor. Furthermore, mitogenic control of the promoter required an intact E2F binding element, and binding of E2F2, E2F4 and p107 was demonstrated in vitro. A down-regulation element, located immediately downstream from the core promoter, bound E2F1, NF-1 and pRb transcription factors. A model of the promoter function is presented. Topoisomerase IIβ binding protein 1 (TopBP1) was found to be associated with human DNA polymerase ε. TopBP1 contains eight BRCT domains and is homologous to Saccharomyces cerevisiae Dpb11, Schizosaccharomyces pombe Cut5, Drosophila melanogaster Mus101 and the human Breast Cancer susceptibility protein 1 (BRCA1). TopBP1 is a phosphoprotein, whose expression is induced at the G1/S border and is required for chromosomal DNA replication. It co-localizes in S phase with BRCA1 into discrete foci, which do not represent sites of ongoing DNA replication. However, if DNA is damaged or replication is blocked in S phase cells, TopBP1 and BRCA1 re-localize into proliferating cell nuclear antigen (PCNA) containing foci that represent stalled replication forks. Finally, phosphorylation of DNA polymerase ε was described and at least three immunologically distinct and differentially phosphorylated forms were shown to exist. Phosphorylation is on serine and threonine residues and shows a cell cycle dependent fluctuation, but is not affected by DNA damage or by inhibition of DNA replication. BRCA1 co-immunoprecipitates with a hypophosphorylated form of DNA polymerase ε. In contrast, TopBP1 was shown to be associated with a hyperphosphorylated form.
757

Synthesis, characterization and properties of novel phosphorylated multiwalled carbon nanotubes/polyvinyl chloride nanocomposites

Mkhabela, Vuyiswa J. 13 September 2011 (has links)
M.Sc. / Carbon nanotubes (CNTs) have been of utmost scientific interest since their discovery in 1991 by a Japanese physicist - Sumio Iijima. This is due to their extraordinary properties which make them one of the most promising options for the design of novel ultrahigh strength polymer nanocomposites. It is believed that the high aspect ratio, mechanical strength, and high electrical and thermal conductivity of these CNTs will enhance the performance of many polymer / CNT nanocomposites and open up new applications. However, poor dispersibility and lack of interfacial adhesion of the CNTs in the polymer matrix have remained a challenge towards fabrication of these nanocomposites. This has been due to the atomically smooth surface of the nanotubes and their intrinsic van der Waals forces which make them chemically inert. This study was aimed at exploring this concept by using novel phosphorylated multiwalled carbon nanotubes (p-MWCNTs) and polyvinyl chloride (PVC) polymer. Phosphorylation of MWCNTs has been successfully achieved in our laboratories, with the p-MWCNTs showing improvement in thermal stability. PVC on the other hand, is the world’s second largest thermoplastic material and has physical properties that are key technical advantages for its use in various and diverse fields such as building and construction, electronics, food packaging and in medical applications. A novel solvent-free method was used to synthesize p-MWCNTs / PVC nanocomposites. MWCNTs were synthesized by nebulized spray pyrolysis, a modification of catalytic vapour deposition and purified by soxhlet extraction using toluene. This method proved to be convenient and economical, producing a high yield of carbon nanotubes. The MWCNTs were phosphorylated with alkylazido phosphonate compounds through a 1,3-dipolar cycloaddition reaction between the phosphonate azides and the C=C bonds of the MWCNTs, with nitrogen loss occurring upon thermolysis. These p-MWCNTs were then melt compounded with PVC to form the p-MWCNTs / PVC nanocomposites. vii The phosphorylation of the MWCNTs and their dispersion in the PVC matrix were characterized by FTIR, SEM, TEM and Raman spectroscopy. Thermal analysis of the nanocomposites by TGA and DSC showed an enhanced thermal stability when comparing the nanocomposites with neat PVC. The modulus of the MWCNTs / PVC nanocomposites increased whilst there was a reduction in their tensile strength, indicating a decrease in polymer toughness.
758

Molecular characterization of the Hsp70/Hsp90 organizing protein (Hop) phosphorylation, subcellular localization and interaction with Hsp90

Daniel, Sheril January 2008 (has links)
Hop (Hsp70-Hsp90 Organizing Protein) is a co-chaperone of two major molecular chaperones, Hsp70 and Hsp90, and acts by transferring substrates from Hsp70 to Hsp90. Although under normal conditions Hop is predominantly localized within the cytosol, Hop has been detected in the nucleus under certain conditions including cell cycle arrest. A putative nuclear localization signal (NLS) has been identified within Hop, which overlaps with the TPR2A domain (previously shown to be critical for Hop-Hsp90 interactions). Hop is phosphorylated in vitro by two cell cycle kinases, namely, casein kinase II (CKII) at S189 and cdc2-kinase at T198; both residues are found upstream of the putative NLS and TPR2A domain. Mimicking phosphorylation at either phosphorylation site appeared to affect the subcellular localization of Hop. The aim of this study was to characterize Hop with respect to its phosphorylation status in vivo, as well as its subcellular localization pattern under heat stress and determine how these properties affected its interaction with Hsp90 as a co-chaperone. Dephosphorylation of proteins under normal and heat shock conditions changed the isoform composition of Hop, providing strong evidence that Hop was phosphorylated in vivo. Surface plasmon resonance (SPR) and glutatione-S-transferase (GST) co-precipitation studies showed that a cdc2-kinase phosphorylated mimic of Hop disrupted Hop-Hsp90 binding. A full length Hop-EGFP construct, as well as substitution mutants of the predicted NLS residues within the Hop-EGFP construct, were transfected into baby hamster kidney (BHK)-21 cells in order to establish the subcellular localization of Hop under heat stress and to test whether predicted residues were critical for nuclear localization of Hop. Under normal conditions, both Hop-EGFP and the NLS mutants were predominantly cytosolic, but when the cells were subjected to heat stress, Hop and its NLS-mutants were localized to both the cytosol and the nucleus. SPR and GST co-precipitation studies showed that substitution of the residues within the major arm of the putative NLS abrogated Hop-Hsp90 interactions. The data obtained from this study, showed for the first time, that Hop was phosphorylated in vivo and suggested that phosphorylation of Hop by cdc2-kinase could inhibit Hop-Hsp90 interactions. Moreover, these results suggested that the subcellular localization of Hop was dependent on stress levels of the cell, particularly heat stress. We propose that the nuclear localization of Hop may be primarily regulated by stress and secondarily by cell cycle arrest. The major arm of the putative NLS did not affect the localization of Hop directly, but was shown to be critical for Hop-Hsp90 binding in vitro. The results of this study suggested that binding of Hop to Hsp90 sequestered Hop within the cytosol and that Hsp90 acted as a cytosolic retention factor for Hop. Both phosphorylation of Hop, and its subcellular localization, appeared to be intimately related to its interaction with Hsp90 as a co-chaperone.
759

Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage

Waraky, Ahmed, Lin, Yingbo, Warsito, Dudi, Haglund, Felix, Aleem, Eiman, Larsson, Olle 03 November 2017 (has links)
We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G(1) cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT.
760

The Role of Redox Signaling in the Molecular Mechanism of Tamoxifen Resistance in Breast Cancer

Garba, Nana Aisha 13 January 2012 (has links)
The emergence of tamoxifen or aromatase inhibitor resistance is a major problem in the treatment of breast cancer. The molecular signaling mechanism of antiestrogen resistance is not clear. Understanding the mechanisms by which resistance to these agents arise could have major clinical implications for preventing or circumventing it. Therefore, in this dissertation we have investigated the molecular mechanisms underlying antiestrogen resistance by studying the contributions of reactive oxygen species (ROS)-induced redox signaling pathways in antiestrogen resistant breast cancer cells. Our hypothesis is that the conversion of breast tumors to a tamoxifen-resistant phenotype is associated with a progressive shift towards a pro-oxidant environment of cells as a result of oxidative stress. The hypothesis of this dissertation was tested in an in vitro 2-D cell culture model employing state of the art biochemical and molecular techniques, including gene overexpression, immunoprecipitation, Western blotting, confocal imaging, ChIP, Real-Time RT-PCR, and anchorage-independent cell growth assays. We observed that tamoxifen (TAM) acts like both an oxidant and an antioxidant. Exposure of tamoxifen resistant LCC2 cell to TAM or 17 beta-estradiol (E2) induced the formation of reactive oxidant species (ROS). The formation of E2-induced ROS was inhibited by co-treatment with TAM, similar to cells pretreated with antioxidants. In LCC2 cells, treatments with either E2 or TAM were capable of inducing cell proliferation which was then inhibited by biological and chemical antioxidants. Exposure of LCC2 cells to tamoxifen resulted in a decrease in p27 expression. The LCC2 cells exposed to TAM showed an increase in p27 phosphorylation on T157 and T187. Conversely, antioxidant treatment showed an increase in p27 expression and a decrease in p27 phosphorylation on T157 and T187 in TAM exposed cells which were similar to the effects of Fulvestrant. In line with previous studies, we showed an increase in the binding of cyclin E–Cdk2 and in the level of p27 in TAM exposed cells that overexpressed biological antioxidants. Together these findings highly suggest that lowering the oxidant state of antiestrogen resistant LCC2 cells, increases LCC2 susceptibility to tamoxifen via the cyclin dependent kinase inhibitor p27.

Page generated in 0.2469 seconds