• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 428
  • 121
  • 69
  • 64
  • 36
  • 36
  • 21
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 933
  • 285
  • 269
  • 232
  • 224
  • 163
  • 128
  • 124
  • 115
  • 106
  • 102
  • 99
  • 98
  • 97
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Photonic Crystal Based Wavelength Demultiplexing

Tekeste, Meron Yemane 18 August 2006 (has links)
No description available.
262

Development of Polychromatic Laser Beacon Fiber Coupling System Based on Photonic Crystal Fibers

Sangam, Ramyaa Ramesh January 2013 (has links)
No description available.
263

DESIGN AND ANALYSIS OF A 32X32-BIT DATABASE FILTER CHIP BASED ON A CMOS COMPATIBLE PHOTONIC VLSI DEVICE TECHNOLOGY

TANG, JIANJING 02 September 2003 (has links)
No description available.
264

Grating and Planar Solid Immersion Mirror Coupled Photonic Crystal Waveguides

Masturzo, Scott A. 09 August 2010 (has links)
No description available.
265

Specific property analysis of thin-film semiconductors for effective optical logical operations

Liyanage, Chinthaka 30 September 2008 (has links)
No description available.
266

Femtosecond Laser Micromachining of Lithium Niobate

Driedger, Paul T. 02 1900 (has links)
<p> Lithium niobate is an important photonic material that has potential applications in MEMS. Unfortunately, it is difficult to process using conventional methods. This thesis is an exploratory study to determine the viability of using a femtosecond laser as a fabrication tool for lithium niobate. Unexpectedly, a rich range of behaviour, likely arising from the complex material structure and composition, was discovered. Depending on the processing conditions, it was demonstrated that machining can either result in deep, high-aspect ratio grooves with minimal surrounding damage or dramatic modification of the lithium niobate to great depths with very little material removal.</p> <p> When machining grooves, increasing the effective number of pulses Neff (i.e. decreasing cutting speed) gave rapidly increasing ablation depths until a threshold was reached, after which the grooves were nearly filled with amorphous material. The depth of these amorphous channels rapidly saturates and becomes nearly independent of Neff. The ablation depth dependence on fluence showed gentle and strong ablation regimes. The amorphous channel depth depended almost linearly on fluence. Subsequent laser passes over amorphous channels eventually removed the amorphous material from the groove, indicating a dependence on the time between laser pulses. Crystal orientation was not a factor.</p> <p> The results are understood in terms of incubation and wave guiding. The first pulses ablate some material and incubate a channel of material below the surface. With further pulses, increasing incubation accelerates ablation. At the threshold Neff, the absorption coefficient has increased enough that the next pulse is able to melt a significant amount of material, which expands to fill the groove. It is suggested that, initially, the amorphous material is able to guide subsequent pulses to the bottom of the channel, resulting in a very slowly increasing depth with Neff. Subsequent passes cause ablation once again since compositional changes in the amorphous material have relaxed. Irradiated samples appear thermally reduced, which would create colour centres leading to increased absorption and thus incubation.</p> <p> Femtosecond lasers are indeed able to create MEMS structures. Multiple passes in the ablation regime yielded deep grooves, with laser polarization perpendicular to the groove giving the best results. Fabrication of micro-cantilevers and bridges was demonstrated.<p> / Thesis / Master of Applied Science (MASc)
267

Interferometric Photonic Sensors in Silicon-On-Insulator Waveguides

Prescott, Adam William January 2008 (has links)
<p> An optical temperature sensor and Fourier spectrometer, working in the 1550nm telecommunications wavelength range, were fabricated in silicon-on-insulator. Both devices were based on asymmetric Mach-Zehnder Interferometer waveguide geometries. The temperature sensor underwent a two phase design. The various asymmetry factors, due to different path length differences, of the Mach-Zehnder arms resulted in different levels of temperature sensitivity, which in turn was the driving mechanism behind the Fourier spectrometer. Due to the asymmetry of the Mach-Zehnder arms, there exists an inherent optical path length difference which is further changed with temperature variation due to the thermo-optic effect. The phase I temperature sensor showed an accuracy of 1-2°C and a sensitivity of 0.5°C for ΔL of 37.23μm and 23.46μm, respectively. The phase II temperature sensor design, which allowed for self normalization, resulted in a 1°C temperature accuracy and a 0.5°C sensitivity for a ΔL of 27.85μm. Both the phase I and II temperature sensors showed repeatable and stable results for the temperature range of 20-100°C, and agreed well with the theoretical design performance. Upon analysis of the highly asymmetric Mach-Zehnder designs it was found that both the 1.05cm and 3.05cm path length differences resulted in a temperature accuracy of 0.1°C, with a 0.05°C sensitivity over a small temperature range.</p> <p> The Fourier spectrometer exhibited decent agreeability with theoretical design performance and demonstrated proof of concept. A 1.05cm path length difference was insufficient to resolve two wavelengths at 1546.12nm and 1564.68nm, which agreed with the theoretical model. However, the 3.05cm ΔL was sufficient to resolve the two wavelengths in a repeatable manner.</p> / Thesis / Master of Applied Science (MASc)
268

Defect Engineering for Silicon Photonic Applications

Walters, David January 2008 (has links)
<p> The work described in this thesis is devoted to the application of defect engineering in the development of silicon photonic devices. The thesis is divided into simulation and experimental portions, each focusing on a different form of defect engineered silicon: ion implantation induced amorphous silicon and solid-phase epitaxial regrowth suppressed polycrystalline silicon.</p> <p> The simulations are directed at silicon rib waveguide Raman laser applications. It is shown that a uniform, divacancy defect concentration will not enhance Raman gain. The excess optical loss and free carrier lifetime of rib waveguides with remote amorphous silicon volumes were simulated. Net gain was demonstrated depending on the geometry of the structure. For a waveguide structure with rib width, rib height and slab height of W = 1.5, H = 1.5 and h = 0.8 μm respectively, the optimal separation between the edge of the rib and the amorphous region is ~2.0 μm. Surface recombination velocity modification was shown to be an effective means to reduce free carrier lifetime.</p> <p> Experimental work was devoted to the characterization of a novel form of polycrystalline silicon created by amorphizing the entire silicon overlayer of a silicon-on-insulator wafer. Solid-phase epitaxial regrowth of the amorphous silicon is suppressed upon annealing due to the lack of a crystal seed and results in polycrystalline silicon. This material was characterized with ellipsometry, positron annihilation spectroscopy and x-ray diffraction. The material properties are shown to be heavily dependent on the annealing conditions. Ellipsometry showed that the refractive index at 1550 nm is comparable to crystalline silicon. Positron annihilation spectroscopy showed that the polycrystalline material exhibits a high concentration of vacancy-type defects while vertically regrown crystalline silicon does not. X-ray diffraction showed that the polycrystalline silicon is non-textured, strained in tension and is characterized by grain sizes less than 300 nm.</p> <p> Defect etching and optical measurements using a waveguide geometry were performed in order to characterize the lateral regrowth and the optical loss of the polycrystalline material. Lateral regrowth in the [011] direction was 1.53 and 0.96 μm for 10 minute anneals at 750 and 900 °C respectively, and at least 2.5 μm at 650 °C. Waveguide optical loss measurements with adjacent polycrystalline regions separated from the rib by at least 5.5 μm showed no separation dependence. The intrinsic optical loss of the polycrystalline material was estimated to be 1.05 and 1.57 dB/cm for TM and TE polarizations after a 900 °C anneal. Vertically regrown c-Si was shown to exhibit less than 3.0 dB/cm optical loss after annealing at 550 °C .</p> / Thesis / Master of Applied Science (MASc)
269

Analysis and Design of Thin Film Coatings and Deep-Etched Waveguide Gratings for Integrated Photonic Devices / Deep-Etched Waveguide Gratings for Photonic Devices

Zhou, Guirong 04 1900 (has links)
This thesis aims at investigating the feasibility of realizing antireflection (AR) and high-reflection (HR) to the semiconductor waveguide end facet using monolithically integratable deep-etching technology to replace the conventional thin film dielectric coating counterpart. Conventional AR coating and HR coatings are the building blocks of semiconductor optical amplifier and semiconductor lasers. In this thesis, the AR coating and HR coating are first studied systematically and comprehensively using two computational electromagnetics approaches: plane wave transmission matrix method (TMM) and finite difference time domain (FDTD) method. The comparison of the results from the two approaches are made and discussed. A few concepts are clarified based on the different treatment between the AR coatings for bulk optics and those for semiconductor waveguide laser structure. The second part uses the same two numerical tools and more importantly, the knowledge gained from the first part to analyze and design deep-etched waveguide gratings for the advantage of ease of monolithic integration. A variational correction to the TMM is provided in order to consider effect of the finite etching depth also in the plane wave model. Specially, a new idea of achieving AR using deep-etched waveguide gratings is proposed and analyzed comprehensively. A preliminary design is obtained by TMM optimization and FDTD verifications, which provides a minimum power reflectivity in the order of 10-5 and a bandwidth of 45nm for the power reflectivity less than 10-3. In order to eliminate the nonphysical reflections from the boundary, the perfectly matched layer (PML) absorbing condition is employed and pre-tested for antireflection analysis. The effects of etching depth and number of etching grooves are specifically analyzed for the performance of proposed structures. Numerical results obtained by FDTD method indicate a promising potential for this alternative technologies. / Thesis / Master of Engineering (ME)
270

Analysis and Applications of Microstructure and Holey Optical Fibers

Kim, Jeong I. 27 October 2003 (has links)
Microstructure and photonic crystal fibers with periodic as well as random refractive-index distributions are investigated. Two cases corresponding to fibers with one-dimensional (1D) radial index distributions and two-dimensional (2D) transverse index distributions are considered. For 1D geometries with an arbitrary number of cladding layers, exact analytical solutions of guided modes are obtained using a matrix approach. In this part, for random index distributions, the average transmission properties are calculated and the influence of glass/air ratio on these properties is assessed. Important transmission properties of the fundamental mode, including normalized propagation constant, chromatic dispersion, field distributions, and effective area, are evaluated. For 2D geometries, the numerical techniques, FDTD (Finite-Difference Time-Domain) method and FDM (Finite Difference Method), are utilized. First, structures with periodic index distributions are examined. The investigation is then extended to microstructure optical fibers with random index distributions. Design of 2D microstructure fibers with random air-hole distributions is undertaken with the aim of achieving single-mode guiding property and small effective area. The former is a unique feature of the holey fiber with periodic air-hole arrangement and the latter is a suitable property for nonlinear fiber devices. Measurements of holey fibers with random air-hole distributions constitute an important experimental task of this research. Using a section of a holey fiber fabricated in the draw tower facility at Virginia Tech, measurements of transmission spectra and fiber attenuation are performed. Also, test results for far-field pattern measurements are presented. Another objective of this dissertation is to explore new applications for holey fibers with random or periodic hole distributions. In the course of measuring the holey fibers, it was noticed that robust temperature-insensitive pressure sensors can be made with these fibers. This offers an opportunity for new low-cost and reliable pressure fiber-optic sensors. Incorporating gratings into holey fibers in conjunction with the possibility of dynamic tuning offers desirable characteristics with potential applications in communications and sensing. Injecting gases or liquids in holey fibers with gratings changes their transmission characteristics. These changes may be exploited in designing tunable optical filters for communication applications or making gas/liquid sensor devices. / Ph. D.

Page generated in 0.0422 seconds