• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 492
  • 254
  • 60
  • 35
  • 33
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • Tagged with
  • 1119
  • 232
  • 142
  • 106
  • 101
  • 85
  • 82
  • 79
  • 73
  • 72
  • 66
  • 65
  • 65
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Effects of the invasive annual grass Lolium multiflorum Lam. on the growth and physiology of a Southern African Mediterranean-climate geophyte Tritonia crocata (L.) Ker. Gawl. under different resource conditions / J.L. Arnolds

Arnolds, Judith Lize January 2007 (has links)
Little is known of the physiological and biochemical mechanisms underlying competitive interactions between alien invasive grasses and native taxa, and how these are affected by resource supply. Consequently, this study compared photosystem II (PS II) function, photosynthetic gas and water exchange, enzyme and pigment concentrations, flowering and biomass accumulation in an indigenous geophyte, Tritonia crocata (L.) Ker. Gawl., grown in monoculture and admixed with the alien grass, Lolium multiflorum Lam., at different levels of water and nutrient supply. Diminished stomatal conductances were the primary cause of reduced net C02 assimilation rates, and consequent biomass accumulation in T. crocata admixed with L. multiflorum at all levels of water and nutrient supply with one exception. These corresponded with decreased soil water contents induced presumably by more efficient competition for water by L. multiflorum, whose biomass was inversely correlated with soil water content. Biochemical impairments to photosynthesis were also apparent in T. crocata admixed with L. multiflorum at low levels of water and nutrient supply. These included a decline in the density of working photosystems (reaction center per chlorophyll RC/ABS), which corresponded with a decreased leaf chlorophyll a content and a decreased efficiency of conversion of excitation energy to electron transport (¥0 / l-^o), pointing to a reduction in electron transport capacity beyond QA~, a decline in apparent carboxylation efficiency and Rubisco content. At low nutrient levels but high water supply, non-stomatal induced biochemical impairments to photosynthesis (decreased RC/ABS, chlorophyll a and Rubisco content) were apparent in T. crocata admixed with L. multiflorum. These attributed to a reallocation of fixed carbohydrate reserves to floral production which increased significantly in T. crocata under these conditions only and associated with a corresponding reduction in the mass of its underground storage organ (bulb). The results of this study did not support the hypothesis that under conditions of low water and low nutrient supply invasive annual grasses would have a lesser impact on the growth and physiology of native geophytes than under resource enriched conditions that favor growth of these grasses. Unresolved is whether resource limitation and allelopathic mechanisms functioned simultaneously in the inhibition of the native geophyte by the alien grass. / Thesis (M. Environmental Science (Ecological Remediation and Sustainable Utilisation))--North-West University, Potchefstroom Campus, 2008.
342

Geochemistry of manganese and iron across both stable and dynamic natural oxic-anoxic transition zones

Trouwborst, Robert Elisa. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: George W. Luther, III., College of Marine and Earth Studies. Includes bibliographical references.
343

Linking morphology and physiology as predictors of productivity in elite families of southern pines

Chmura, Daniel Jozef 15 May 2009 (has links)
Crown architecture affects tree growth through the control of leaf area and its display. Yet the linkages between crown structure, leaf traits, and productivity of elite selections of forest trees and responses to intensive silviculture are not fully understood. It was hypothesized that trees with crown and leaf traits governing efficient light capture and photosynthesis at the canopy scale would be the most productive. To this end, families of loblolly (Pinus taeda) and slash pine (Pinus elliottii) were grown at three experimental sites in the West Gulf Coastal Plain of Texas and Louisiana under two silvicultural treatments, including repeated fertilization with control of competing vegetation (HI), and a control (C) consisting of fertilization at planting. Families and species differed in crown traits and aboveground productivity, and genotype differences increased throughout the first 5 years of stand development. Crown shape was important for light interception and growth initially, but at the onset of canopy closure, crown size, stand leaf area and its distribution within crowns affected canopy light interception and tree growth. Among all families and treatments, aboveground biomass productivity was positively related to absorbed photosynthetically active radiation (APAR) and canopy photosynthesis. Light-use efficiency (ε) varied from 0.41 to 0.56 g MJ-1 among families and was lowest in slash pine. Variability in aboveground biomass growth was related more to stand leaf area and APAR than to differences in light-use efficiency in these young stands. Leaf physiological, chemical and morphological attributes changed within crowns in accordance with developing light availability gradients. Physiological attributes, such as net photosynthesis, were better predictors of family performance when integrated at the canopy level than leaf level in the examined pine species. Crown size, light absorption, and aboveground growth generally ranked higher in the HI treatment than in the control, although the effects of the intensive silvicultural treatments did not differ statistically. Family performance was independent of treatment. Crown and canopy attributes, such as high leaf area index and large crowns with low leaf area density per crown volume, may be useful in the selection of highly productive genotypes of loblolly and slash pine under intensive silviculture.
344

Dinuclear Manganese Complexes for Artificial Photosynthesis : Synthesis and Properties

Anderlund, Magnus January 2005 (has links)
This thesis deals with the synthesis and characterisation of a series of dinuclear manganese complexes. Their ability to donate electrons to photo-generated ruthenium(III) has been investigated in flash photolysis experiments followed by EPR-spectroscopy. These experiment shows several consecutive one-electron transfer steps from the manganese moiety to ruthenium(III), that mimics the electron transfer from the oxygen evolving centre in photosystem II. The redox properties of these complexes have been investigated with electro chemical methods and the structure of the complexes has been investigated with different X-ray techniques. Structural aspects and the effect of water on the redox properties have been shown. One of the manganese complexes has been covalently linked in a triad donor-photosensitizer-acceptor (D–P–A) system. The kinetics of this triad has been investigated in detail after photo excitation with both optical and EPR spectroscopy. The formed charge separated state (D––P–A+) showed an unusual long lifetime for triad based on ruthenium photosensitizers. The thesis also includes a study of manganese-salen epoxidation reactions that we believe can give an insight in the oxygen transfer mechanism in the water oxidising complex in photosystem II.
345

Low temperature acclimation in plants : alterations in photosynthetic carbon metabolism

Lundmark, Maria January 2007 (has links)
Although low temperature plays an important role in determining agricultural yield, little is known about the effect on the underlying biochemical and physiological processes that influence plant growth. Photosynthesis and respiration are central to plant growth and both processes are heavily affected by temperature. However, many plants have the ability to cope with low temperature and resume growth by cold acclimating. We have shown that enhancement of carbon fixation, an increased flux of carbon into sucrose and the recovery of diurnal export is crucial for the recovery of functional carbon metabolism at low temperature in Arabidopsis thaliana. The recovery of efflux is governed by increased expression of sucrose transporters along with changes in vascularisation. We also demonstrate the importance of controlling the flux of metabolites between the chloroplast and the cytosol by regulating the expression of AtTPT. We further investigated the difference in response between leaves developed at low temperature but originating from warm grown Arabidopsis and leaves from plants grown from seed at low temperature. We were able to distinguish factors that respond specifically to low temperature from those that are connected to the actual stress. Substantial difference could be seen in the different metabolomes. One conclusion drawn is that the increase in sucrose reported at low temperature is an essential feature for life in the cold. In an extended study we were able to transfer some of the key factor of cold acclimation in Arabidopsis to other species. The study included forbs, grasses and evergreen trees/shrubs showed that there are striking similarities in the extent and biochemical changes that underpin acclimation among the different functional groups. Low temperature does not only influence growth of the leaves, perennial organs such as the corm of the ornamental plant Crocus vernus is also affected. However in these plants low temperature has a positive effect on the final size of the corm. We were able to show that this enhanced growth was an affect of increased cell size and thus increased sink capacity, which ultimately delays leaf senescence
346

Molecular characterization of protein phosphorylation in plant photosynthetic membranes

Hansson, Maria January 2006 (has links)
Higher plants cannot move to a more favorable place when the environmental conditions are changing. To adapt to changes in light, temperature and access to water the plants had to evolve special mechanisms at the molecular level. Post-translational modifications of proteins, like phosphorylation, often serve as “on-and-off” switches in regulation of cellular activity and may affect protein-protein interactions. Photosynthesis in higher plants is regulated by reversible protein phosphorylation events, in a unique light- and redox-controlled system. Several biochemical methods are effectively used for characterization of phosphorylated proteins in photosynthetic membranes. Nevertheless, mass spectrometry is the most effective technique when it comes to identification of exact phosphorylation site(s) in the protein sequence, which is the ultimate evidence of protein phosphorylation. The same tandem mass spectrometry analysis identifies other in vivo post-translational modifications as well, such as acetylation of the N-terminus of mature protein. To study membrane proteins is a challenging project. In the present work the “shaving” of surface-exposed part of the membrane proteins, where phosphorylation occur, is used. In combination with mass spectrometry, this technique does not require the use of radioactive labeling or antibodies. The present work in spinach and Arabidopsis thaliana has identified and characterized several known phosphoproteins, new phosphorylation sites in well-known photosynthetic proteins, as well as two phosphoproteins previously unknown to be present in the photosynthetic membrane. Several photosystem II (PSII) core proteins become phosphorylated in their N-termini (D1, D2, CP43, PsbH), process involved in the regulation of the repair cycle of photo-damaged PSII complexes. The protein-protein interactions between PSII and its light harvesting complex (LHCII) seem to be affected by phosphorylation events in the interface area. In higher plants, phosphorylation sites have been identified in LHCII polypeptides, in one of the proteins (CP29) present in the interface area, as well as in the peripheral TSP9 protein. The TSP9 protein is unique among photosynthetic phosphoproteins, since it is a plant-specific soluble protein that becomes triple-phosphorylated in the middle part of the protein. It is also shown that photosystem I (PSI) is subjected to protein phosphorylation. The extrinsic PSI subunit PsaD becomes phosphorylated in its N-terminus. In addition, the latest characterized subunit of PSI, PsaP, is identified as a phosphoprotein. PsaP is an intrinsic protein assembled on the same side of the PSI complex as LHCII attaches. Several kinases are involved in phosphorylation of photosynthetic proteins, some more specific to PSII core proteins whereas others recognize LHCII proteins better. The STN8 kinase does not phosphorylate LHCII proteins, but is involved in the phosphorylation of the PSII core proteins D1, D2, CP43 and PsbH. STN8 is light-activated and is also specific in phosphorylation of threonine-4 (Thr-4) in the PsbH protein, but only after another kinase has phosphorylated Thr-2 first. A common feature of all kinases in plant photosynthetic membranes is the specificity for Thr residues and that the phosphorylation reactions occur in the N-terminal sequence of the proteins, except for the TSP9 protein. Nowadays, research is on the way to solve the complex network of regulation of photosynthetic activity via protein phosphorylation, but far more efforts are needed to get a complete view of the importance of all phosphorylation events and enzymatic specificity.
347

Mimicking Nature – Synthesis and Characterisation of Manganese Complexes of Relevance to Artificial Photosynthesis

Berggren, Gustav January 2009 (has links)
The development of efficient catalyst for water oxidation is of paramount importance to artificial photosynthesis, but before this can be achieved a deeper understanding of this reaction is essential. In nature this reaction occurs in a tetranuclear Mn-cluster which serves as the work-horse of oxygenic photosynthesis. This thesis summarises my efforts at developing molecular systems capable of mimicking this complex employing a biomimetic approach. Three different approaches towards this goal are described here-in. The first section describes a screening study, in which a number of manganese complexes were tested to see whether or not they were capable of catalysing the formation of dioxygen when treated with different oxidants (Papers I). For those reactions in which dioxygen formation was observed the reactions were repeated in labelled water and the incorporation of labelled O-atoms was studied by mass spectrometry. This allowed us to determine to what extent water was the source of the evolved dioxygen (Papers II-III). In Chapter three a reported catalyst and a derivative thereof is studied in depth. The influence of changes to the ligand on the oxygen–oxygen bond forming reaction could unfortunately not be reliably addressed, because of the instability of the complexes under “catalytic” conditions. Nevertheless, the study allowed us to revise the “carboxylate shift”-mechanism suggested in the literature (Papers IV-V). Chapter four describes the continuation of my work on ligands featuring the carboxylate ligand motif first introduced in Chapter three. In this study ligands containing multiple binding pockets were designed and synthesised (Paper VI). A better understanding of the mechanism in the natural water oxidising enzyme will facilitate the design of biomimetic complexes, this is discussed in Chapter five. In this work model complexes (Paper VII) are used to study the mechanism by which natures own water oxidising catalyst performs this reaction.
348

Barns tankar om fotosyntes, nedbrytning och fortplantning. / Children´s conception about photosynthesis, decomposition and reproduction.

Stange, Elisabeth January 2008 (has links)
In this study I will find out which thoughts and alternative conceptions pupils have about photosynthesis, decomposing and breeding. The method used was qualitative semi-structured interviews with pupils in preschool class and in the third grade. They were interviewed about what a flower needs in order to live, die and to propagate themselves. The result shows that the students have alternative conceptions about these issues. There are no big differences in the notions of the average classes. There is a relation between the children’s way of living and their notions. The result shows that all 17 pupils know that the flowers need water and soil. Half of them know that it also needs sun. But only 2 pupils know that the flowers need sugar to live.
349

Effects of Different Signalling Pathways on Regulation of 'GLK' GARP Transcription Factors in 'Arabidopsis thaliana'

Ponomareva, Ekaterina 17 April 2012 (has links)
GLK1 and GLK2 transcription factors have been suggested to be involved in the regulation of chloroplast development, organic nitrogen signaling, disease resistance and circadian rhythmicity (Waters et al. 2009; Gutiérrez et al. 2008; Savitch et al. 2007; Sprott et al. 2010). This implies that multiple factors may play roles in regulation of GLK genes. In the present study, transcriptional regulation of GLK1 and GLK2 in Arabidopsis by various endogenous and environmental stimuli was investigated with the objective of elucidating the primary signalling pathway affecting expression of these two genes. Collectively, results of GLK1 and GLK2 expression in response to the experimental treatments of Arabidopsis point to the regulation of the two genes by changes in photosynthetic metabolism and reactive oxygen species (ROS) levels, and by organic nitrogen signalling. Changes in ROS levels and organic nitrogen signalling may also affect the two genes indirectly by interfering with or altering photosynthetic metabolism.
350

Leaf photosynthesis in wheat (<i>Triticum</i> spp.) under conditions of low temperature and CO2 enrichment.

Chytyk, Cody John 22 June 2010
It is well known that photosynthetic health impacts the overall fitness of the mature plant. This study aims to determine photosynthetic vigour of spring wheat cultivars during field development as well as their biomass composition at maturity to determine which cultivars/varieties would be optimum for cellulosic ethanol production. Additionally, specimens were grown at non-acclimating (20˚C), cold acclimating (5˚C), non-acclimating high CO2 (20˚C/750 µmol mol-1 CO2) and cold-acclimating high CO2 (5˚C/750 µmol mol-1 CO2) to resolve photosynthetic responses to different environments. Plants were photoinhibited under high irradiance (5 fold growth irradiance) and low temperature (5˚C) while photochemical efficiency of PSII was monitored throughout using chlorophyll fluorescence imaging. Vegetative production was monitored using normalised difference vegetation index. De-epoxidation of xanthophyll photoprotective pigments were also recorded using HPLC and photochemical reflectance index. Additionally, carbon assimilation rate was recorded with infra-red gas analysis methods. It was discovered that no one wheat cultivar demonstrated any photosynthetic advantage in the field or under photoinhibitory conditions. However, photosynthetic differences were observed between wheat grown in different environments. Plants that were cold-acclimated or grown under high CO2 were more resilient to photoinhibitory stress. This was also reflected by most cold-acclimated cultivars having increased triose phosphate utilization, electron transport and zeaxanthin induction. Plants acclimated to high CO2 at room temperature also displayed increased electron transport and triose phosphate utilization but had decreased zeaxanthin induction. It is hypothesized increased excitation pressure in cold acclimated and high CO2 cultivars allowed for their increase in the development of photoinhibitory tolerance.

Page generated in 0.0177 seconds