• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 492
  • 254
  • 60
  • 35
  • 33
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • Tagged with
  • 1119
  • 232
  • 142
  • 106
  • 101
  • 85
  • 82
  • 79
  • 73
  • 72
  • 66
  • 65
  • 65
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Nucleotide-binding Proteins in the Plant Thylakoid Membrane

Heurtel Thuswaldner, Sophie January 2006 (has links)
<p>Life on Earth is dependent on the oxygen produced through photosynthesis. The thylakoid membrane is the site for the light-driven reactions of photosynthesis, which oxidize water and supply energy in the form of ATP, mainly for carbon fixation. The utilization of ATP in the lumenal space of the thylakoid has not been considered in the past. In the latest years, increasing evidence for nucleotide metabolism in the thylakoid lumen of plant chloroplasts has been presented; ATP transport across the thylakoid membrane, and GTP binding to the PsbO extrinsic subunit of the water-oxidizing photosystem II (PSII) complex.</p><p>In this thesis, various methods for prediction, identification, and characterization of novel plant proteins, are described. Nucleotide-binding motifs and nucleotide-dependent processes are reviewed, and the experimental data is discussed. 1) A thylakoid ATP/ADP carrier (TAAC) in Arabidopsis thaliana was identified and functionally characterized, and 2) the spinach PsbO protein was characterized as a GTPase. The Arabidopsis At5g01500 gene product is predicted as a chloroplast protein and to be homologous to the well-studied mitochondrial ADP/ATP carrier. The putative chloroplast localization was confirmed by transient expression of a TAAC-green fluorescent protein fusion construct. Immuno detection with peptide-targeted antibodies and immunogold electron microscopy showed the thylakoid as the main localization of TAAC, with a minor fraction in the chloroplast envelope. TAAC is readily expressed in etiolated seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. It is proposed that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover. Recombinant TAAC protein was functionally integrated in the cytoplasmic membrane of Escherichia coli, and was shown to specifically transport ATP/ADP in a protonophore-sensitive manner, as also reported for mitochondrial AACs.</p><p>The PsbO protein stabilizes the oxygen-evolving complex of PSII and is ubiquitous in all oxygenic photosynthetic organisms, including cyanobacteria, green algae, and plants. So far only the 3D-structure of the cyanobacterial PsbO is available. Four GTP-binding motifs in the primary structure of spinach PsbO were predicted from comparison with classic GTP-binding proteins. These motifs were only found in the plant PsbOs, in the -barrel domain of the homologous 3D-structure. Using circular dichroism and intrinsic fluorescence spectroscopy, it was shown that MgGTP induces specific structural changes in the PsbO protein. Spinach PsbO has a low intrinsic GTPase activity, which is considerably stimulated when associated with a dimeric PSII complex. GTP stimulates the dissociation of PsbO from PSII under both inhibitory and non-inhibitory light conditions. A role for PsbO as a GTPase in the function of the oxygen-evolving complex and PSII repair is proposed.</p>
532

The significance of feedback de-excitation

Külheim, Carsten January 2005 (has links)
<p>During photosynthesis sunlight is absorbed by photosynthetic pigments and converted into organic compounds, such as carbohydrates. Photosynthesis needs to be highly regulated, since both too much and too little light are harmful to plant. If too little light is absorbed, a plant cannot store enough energy, which will have effects on growth and fitness of the plant. With too much light absorbed, a dangerous side reaction of photosynthesis, the production of reactive oxygen species can happen. These reactive oxygen species can damage the proteins in the chloroplast and the lipids of the chloroplast.</p><p>To avoid the production of reactive oxygen species, plants have evolved many mechanisms, which act on different time-scales and different levels of organization. As a first measure, when the absorbed light is exceeding the capacity for its utilization, is to switch the light-harvesting antenna from efficient light harvesting to energy dissipation. This process is called feedback de-excitation (FDE). The protein PsbS is essential for this process as well as a functioning xanthophylls cycle with the enzyme violaxanthin de-epoxidase (VDE).</p><p>I have investigated the effects of plants with changes in their ability to dissipate excess excitation energy in the model plants species Arabidopsis thaliana. Three genotypes with either increased or decreased capacity for FDE were used during my experiments. The first genotype over-expresses the PsbS gene, having approximately two-fold increased amounts of PsbS and FDE. The second is a PsbS deletion mutant with no PsbS protein and no FDE. The third genotype cannot perform the conversion of violaxanthin to zeaxanthin, because the enzyme VDE is missing. This mutant has some FDE left. </p><p><i>Arabidopsis thaliana</i> is an annual plant, which flowers only once in its lifetime. Therefore, when counting the seeds produced an estimation of fitness can be made from the amount of seeds produced. This was done during my experiments and shown that FDE is a trait and that plants with increased FDE have a higher fitness and vice versa. </p><p>This was also the case for a collection of plants lacking a single protein from the light harvesting antenna. All of these genotypes had a fitness reduction, proving that their function is not redundant. </p><p>In an attempt to explain why the fitness is reduced in plants with altered FDE, photosynthetic measurements, as well as a determination of the transcriptome and the metabolome was performed. Plants lacking FDE had higher levels of photoinhibition, leading both to lower rates of photosynthesis and to higher repair cost. This could in part explain the reduction in fitness. These plants also had major changes in their transcriptome and their metabolome. Primary metabolism was most effected, for example carbohydrate and amino acid metabolism. But there were also changes in secondary metabolism such as an up regulation of the biosynthesis of anthocyanins.</p>
533

Electron and Energy Transfer in Supramolecular Complexes Designed for Artificial Photosynthesis

Berglund Baudin, Helena January 2001 (has links)
<p>In the society of today the need for alternative energy sources is increasing. The construction of artificial devices for the conversion of sunlight into electricity or fuel seems very attractive from an environmental point of view, since these devices are based on processes that does not necessarily generate any harmful biproducts. In the oxygen evolving photosynthetic process highly efficient energy and electron transfer reactions are responsible for the conversion of the sunlight into chemically stored energy and if the same principles can be used in an artificial device, the only electron supply required, is water. </p><p> This thesis describes energy and electron transfer reactions in supramolecular complexes where the reactions are intended to mimic the basic steps in the photosynthetic process. All complexes are based on ruthenium(II)-trisbipyridine as photosensitizer, that is covalently linked to electron donors or electron or energy acceptors. The photochemical reactions were studied with time resolved transient absorption and emission measurements. In the complexes that mimic the donor side of Photosystem II, where a manganese cluster together with tyrosine catalyses the oxidation of water, intramolecular electron transfer was found to occur from Mn(II) or tyrosine to photo-oxidized Ru(III). Studies of a series of Ru(II)-Mn(II) complexes gave information of the quenching of the Ru(II) excited state by the coordinated Mn(II), which is important for the development of multi-nuclear Ru(II)-Mn complexes. In the supramolecular triad, PTZ-Ru<sup>2+</sup>-Q, the charge separated state, PTZ<sup>+●</sup>-Ru<sup>2+</sup>-Q<sup>-●</sup>, was rapidly formed, and further development where a second electron acceptor is linked to quinone is planned. Ultra fast energy transfer τ<200 fs), was obtained between ruthenium(II) and osmium(II) in a small artificial antenna fragment. Fast and efficient energy transfer is important in larger antennas or photonic wires where a rapid energy transfer is desired over a large distance.</p>
534

Electron Transfer in Ruthenium-Manganese Complexes for Artificial Photosynthesis : Studies in Solution and on Electrode Surfaces

Abrahamsson, Malin L. A. January 2001 (has links)
<p>In today’s society there is an increasing need for energy, an increase which for the most part is supplied by the use of fossil fuels. Fossil fuel resources are limited and their use has harmful effects on the environment, therefore the development of technologies that produce clean energy sources is very appealing. Natural photosynthesis is capable of converting solar energy into chemical energy through a series of efficient energy and electron transfer reactions with water as the only electron source. Thus, constructing an artificial system that uses the same principles to convert sunlight into electricity or storable fuels like hydrogen is one of the major forces driving artificial photosynthesis research.</p><p>This thesis describes supramolecular complexes with the intention of mimicking the electron transfer reactions of the donor side in Photosystem II, where a manganese cluster together with a tyrosine catalyses the oxidation of water. All complexes are based on Ru(II)-trisbipyridine as a photosensitizer that is covalently linked to electron donors like tyrosine or manganese. Photochemical reactions are studied with time-resolved transient absorption and emission measurements. Electrochemical techniques are used to study the electrochemical behavior, and different photoelectrochemical techniques are used to investigate the complexes adsorbed onto titanium dioxide surfaces. In all complexes, intramolecular electron transfer occurs from the linked donor to photo-oxidized Ru(III). It is also observed that coordinated Mn(II) quenches the excited state of Ru(II), a reaction that is found to be distance dependent. However, by modifying one of the complexes, its excited state properties can be tuned in a way that decreases the quenching and keeps the electron transfer properties. The obtained results are of significance for the development of multinuclear Ru-Mn complexes that are capable of multi-electron transfer.</p>
535

Carbon dioxide eddy flux measurements in complex terrain from a coniferous forest under the influence of marine air

Anthoni, Peter M. 02 May 1996 (has links)
Graduation date: 1997
536

Water Relations and Carbon Economy of Hemiepiphytic and Non-hemiepiphytic Ficus Tree Species in Southwest China

Hao, Guangyou 03 May 2010 (has links)
Hemiepiphytes are important components of tropical forests and are attractive to scientists due to their unique epiphytic growth habit during some period of their life cycle. Unique characteristics in plant water relations and carbon economy have been found in hemiepiphytic plants; however, to further understand this group of species on an evolutionary basis it is necessary to carry out comparative studies between hemiepiphytes and their close relatives. In this dissertation I conduced a comparative study in a suite of functional traits related to plant water relations and photosynthesis between hemiepiphytic and non-hemiepiphytic tree species from a single genus-Ficus. Great differentiation in functional traits has been found between species of the two growth forms both during juvenile and adult stages. Seedlings of hemiepiphytic Ficus species (H) had significantly lower xylem hydraulic conductivity, stomatal conductance, net light saturated CO2 assimilation, and higher water use efficiency than congeneric non-hemiepiphytic species (NH), which are adaptive to a drought-prone epiphytic growth conditions under natural conditions. The conservative water use adaptation in H species is likely crucial to the drought tolerance and survival in the forest canopy but is related to much lower growth rates than NH species. Species of the two growth forms both showed relatively large plasticity in responding to variation in light level as in typical light-demanding species. Surprisingly, the NH species showed characteristics related to higher light demand than H species, which is opposite from the prediction that H species are more light-demanding than NH species. Thus, although commonly accepted, it is likely that light was not the selective pressure for the evolution of hemiepiphytism in Ficus. Using adult trees grown in a common garden, I found that H species showed characteristics of more conservative water use even after they established connections to the soil. Moreover, H species showed significantly different traits in photochemistry compared to NH species due to hydraulic-photosynthetic coordination. The evolution of an epiphytic growth habit during the juvenile stage of a life cycle in the hemiepiphytic Ficus species thus involved changes in a suite of functional traits that persist during their terrestrial growth stages.
537

Influence of protein and solvent environments on quantum chemical properties of photosynthesis enzymes and photoreceptors

Götze, Jan Philipp January 2010 (has links)
This thesis contains quantum chemical models and force field calculations for the RuBisCO isotope effect, the spectral characteristics of the blue-light sensor BLUF and the light harvesting complex II. The work focuses on the influence of the environment on the corresponding systems. For RuBisCO, it was found that the isotopic effect is almost unaffected by the environment. In case of the BLUF domain, an amino acid was found to be important for the UV/vis spectrum, but unaccounted for in experiments so far (Ser41). The residue was shown to be highly mobile and with a systematic influence on the spectral shift of the BLUF domain chromophore (flavin). Finally, for LHCII it was found that small changes in the geometry of a Chlorophyll b/Violaxanthin chromophore pair can have strong influences regarding the light harvesting mechanism. Especially here it was seen that the proper description of the environment can be critical. In conclusion, the environment was observed to be of often unexpected importance for the molecular properties, and it seems not possible to give a reliable estimate on the changes created by the presence of the environment. / Diese Arbeit beinhaltet quantenchemische und molekularmechanische Modelle zum Isotopeneffekt des Enzyms RuBisCO, der spektralen Charakterisierung des Blaulicht-Rezeptors BLUF und dem Lichtsammelkomplex II (LHCII). Es wurden vor allem die Einflüsse der Umgebung auf die entsprechenden Systeme untersucht. Für RuBisCO wurde gefunden, dass der Isotopeneffekt nur marginal von der Umgebung abhängt. Im Falle der BLUF Domäne wurde eine Aminosäure charakterisiert (Ser41), die bis dato experimentell noch nicht beschrieben war. Es wurde festgestellt, dass Ser41 hochmobil ist und einen systematischen Einfluss auf die spektrale Verschiebung des BLUF Chromophors (Flavin) hat. Schließlich wurde bei LHCII festgestellt, dass kleine Veränderungen in der Geometrie eines Chlorophyll b/Violaxanthin Chromophorenpaares bereits massive Einflüsse auf den Mechanismus des Lichtsammelprozesses haben können. Insbesondere hier zeigt sich, wie kritisch die genaue Beschreibung der Umgebung ist. Zusammenfassend wurde beobachtet, dass sich die Umgebung in oft unerwarteter Weise auf die molekularen Eigenschaften auswirken kann und es daher nicht möglich zu sein scheint, die entsprechenden Effekte vorher abzuschätzen.
538

Modeling lichen performance in relation to climate : scaling from thalli to landscapes / Modellering av lavars responser i förhållande till klimat : i skalan från bål till landskap

Jonsson Čabrajić, Anna V January 2009 (has links)
Lichens can colonize nearly all terrestrial habitats on earth and are functionally important in many ecosystems. Being poikilohydric, their active growth periods are restricted to periods when the thallus is hydrated from atmospheric water sources, such as rain, fog and high relative humidity. Since lichen hydration varies greatly over time lichen growth is therefore more difficult to model compared with, for example vascular plants with more even water supply. I developed two models to predict lichen hydration under field conditions that incorporates the atmospheric water potential (Ψair), derived from air temperature and humidity, only or in combination with species-specific rehydration and desiccation rates. Using Ψair allows the prediction of hydration induced by several water sources. These models were very accurate for epiphytic lichens with a close coupling to atmospheric conditions, but they were less accurate for mat-forming lichens with substantial aerodynamic boundary layers. The hydration model was further developed to include photosynthetic activation for different species, in order to compare their performance under different micro-climatic scenarios. Water balance and activation rate had large effects on lichen activity and were positively related to habitats providing long hydration periods, for example close to streams. To study effects of climate change, a complete model for net carbon gain (photosynthesis minus respiratory losses) was developed for an epiphytic lichen with intricate responses to light, hydration and temperature. Simulation responses in different climate scenarios revealed that projected climate change on a regional scale resulted in varied local scale responses. At the lighter, exposed sites of a forest, the growth responses were positive, but were potentially negative at darker sites with closed canopy. At the local scale, fluctuating hydration, summed irradiance when wet and Chlorophyll a are variables that predict lichen growth. However, at a landscape scale, these variables may be too detailed. We tested this for two terrestrial, mat-forming lichens and developed statistical models for lichen growth in the widest possible climatic gradient in northern Scandinavia, varying in light, temperature and precipitation. Light was the most important factor for high growth at the landscape scale, reaching saturation at a site openness of 40 %, equivalent to a basal tree area of 15 m2 ha -1 in this study. Thereafter, hydration was the next limiting factor, which could be well described by precipitation for one of the species. The simplest predictor was the normal temperature in July, which was negatively correlated with growth. It was apparent that the predictive variables and their power varied at different scales. However, light and hydration are limiting at all scales, particularly by light conditions when lichens are wet. This implies that ensuring that there is sufficient light below the forest canopy is crucial for lichen growth, especially for mat-forming lichens. Hydrophilic lichens may be better preserved in open habitats with long hydration periods. It was shown that models can be powerful and “easy to use” tools to predict lichen responses in various habitats and under different climate scenarios. Models can therefore help to identify suitable habitats with optimal growth conditions, which is very important for the conservation and management of lichens and their habitats. / Lavar kan kolonisera nästan alla terrestriska habitat i världen och är funktionellt viktiga i många ekosystem. Eftersom lavar är poikilohydriska (växelblöta), är deras aktiva tillväxtperioder begränsade till den tid då bålen är blöt från atmosfäriska vattenkällor, såsom regn, dimma och hög relativ fuktighet. Eftersom lavars vatteninnehåll varierar stort över tid är lavars tillväxt svårare att modellera jämfört med till exempel kärlväxter, med en mer jämn vattentillgång. Jag har utvecklat två fuktmodeller som förutsäger lavars vatteninnehåll i fält. Modellerna använder den atmosfäriska vattenpotentialen (Ψair), som erhålls från lufttemperatur och -fuktighet, antingen enbart eller i kombination med de artspecifika uppblötnings - och uttorkningshastigheterna. Genom att använda (Ψair) kan man förutsäga lavars vatteninnehåll från flera vattenkällor. Dessa modeller var mycket precisa för epifytiska lavar med en nära koppling till de atmosfäriska förhållandena, men fungerade mindre väl för mattlevande lavar med ett betydande gränsskikt. Fuktmodellen utvecklades ytterligare för att inkludera även fotosyntetisk aktivering av olika lavar, för att kunna jämföra deras aktivitet i olika mikroklimatiska scenarior. Vattenbalans och aktiveringshastighet hade stor effekt på på lavars aktivitet och var positivt relaterad till habitat med tillräckligt långa fuktperioder, till exempel habitat nära strömmande vatten. För att studera klimateffekter på lavar, utvecklade jag en total modell för nettoförvärv av kol (fotosyntes minus respiration) för en epifytisk lav med dess intrikata förhållande mellan ljus, fukt och temperatur. Simuleringar av modellen visade att lavens responser i förhållande till regionala klimatförändringar var kontrasterande på lokal nivå. Vid ljusa, öppna lokaler i skogen ökade tillväxten medan de potentiellt minskade vid mörka lokaler med ett mer slutet krontäcke. På den lokala skalan kan fluktuerande vatteninnehåll, summerat ljus när laven är blöt, och klorofyll a- innehåll förutsäga lavars tillväxt. Men, på en landskapsskala kan dessa variabler vara för detaljerade. Vi testade detta för två terrestriska, mattlevande lavar och utvecklade en statistisk modell för lavars tillväxt i en så stor klimatgradient som möjligt i norra Skandinavien genom att variera ljus, temperatur och nederbörd. Ljus var den viktigaste faktorn för att nå hög tillväxt på landskapsnivå där en mättnad nåddes vid 40 % öppenhet i skogen, som motsvarade en grundyta på 15 m2 ha -1 i den här studien. Fuktigheten var den näst viktigaste begränsande faktorn och kunde beskrivas väl med nederbörd för en av arterna. Den mest lättanvända faktorn var normaltemperaturen för juli månad, som i sin tur var negativt korrelerad till tillväxt. Det var tydligt att de prediktiva variablerna och deras förutsägande förmåga varierade med olika skalor. Ljus och fukt var begränsande på alla nivåer, speciellt av ljusförhållandena då lavarna är blöta. Detta innebär att tillräckligt höga ljusnivåer under krontäcket är avgörande för lavars tillväxt, speciellt mattlevande lavar. Hydrofila lavar torde bevaras bättre i öppna habitat med tillräckligt långa fuktperioder. Det var tydligt att modeller kan vara betydelsefulla och lättanvända verktyg för att förutsäga lavars responser i en bredd av habitat med olika mikroklimat. Modeller kan därför vara en hjälp för att identifiera lämpliga habitat med optimala tillväxtförhållanden och detta är viktigt för att bevara och sköta lavar och deras habitat.
539

Peatland Bryophytes in a Changing Environment : Ecophysiological Traits and Ecosystem Function

Granath, Gustaf January 2012 (has links)
Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits to investigate mechanisms behind the response of Sphagnum to elevated N deposition, and, processes connected to ecosystem shift and ecosystem function of peatlands. Regarding elevated N deposition, three experiments were performed at different scales (country-wide to greenhouse). Independent of scale and species, apical tissue N concentration increased with increasing N input until N saturation was reached. Maximum photosynthetic rate, a trait evaluating photosynthetic capacity, increased with N input and could be well predicted by tissue N concentration. Thus, the physiological responses of Sphagnum to N deposition are often positive and I found no evidence of toxic effects. Production did, however, not increase with N input, and results of the N:P ratio suggested that P limitation, and possibly other elements, might hamper growth under high N input. The effect of P limitation was, in contrast to current view, most pronounced in fast growing species indicating species specific responses to nutrient imbalance. I explored the puzzling, but historically frequently occurring, rich fen to bog ecosystem shift; a shift from a species-rich ecosystem dominated by brown mosses, to a species-poor one with greater carbon storage that is Sphagnum-dominated. The bog-dwelling species of Sphagnum grew well, to our surprise, when in contact with rich fen water but was not a strong competitor compared to rich fen Sphagnum species. If submerged under rich fen water (high pH), the bog Sphagnum species died while rich fen species of Sphagnum were unaffected. These results show that differences in two physiological traits (growth rate and tolerance to flooding) among species, can explain when a peatland ecosystem shift might occur. In the last study, the function of peatlands was related to trade-offs between traits and allometric scaling in Sphagnum. Results suggested that growth strategies are determined by the distribution of Sphagnum relative to the water table in order to minimize periods with suboptimal hydration. Allometric analyses stressed the importance of resource allocation among and within shoots (apical part vs. stem), although the allocation patterns in Sphagnum were not always consistent with those of vascular plants. Interestingly, data indicated a trade-off between photosynthetic rate and decomposition rate among Sphagnum species.
540

Functional studies on the Light-harvesting-Like (LiL) Proteins in Cyanobacteria and Cryptophytes

Tibiletti, Tania January 2012 (has links)
The light-harvesting like (LiL) proteins are a widely spread group of proteins within photosynthetic organisms. They are membrane proteins composed of one to four transmembrane helices and – in homology to the light-harvesting complexes of algae and higher plants – at least one of these transmembrane helices contains the chlorophyll a/b-binding (CAB) domain. Opposite to the light-harvesting antenna complexes, LiL proteins are stress induced and they have been shown to be involved in protection of the photosynthetic apparatus. The work presented in this thesis is focused on understanding the function of one-helical LiL proteins of the cryptophyte algae Guillardia theta and the cyanobacterium Synechocystis sp. PCC 6803. G. theta contains two genes encoding LiL proteins, one is localized in the plastid (hlipP), the other in the nucleomorph (HlipNm). Both genes are expressed in normal growth condition, but they are not induced by high light. Immunostaining indicated that HlipNm is translated, but not light-induced. These proteins therefore seem not to be involved in photoprotective mechanisms of G. theta. In the cyanobacterium Synechocystis sp. PCC 6803 four one-helical LiL proteins were identified, they are called Small CAB-like Proteins (SCPs); a fifth LiL (ScpA) is fused with the ferrochelatase (FC), an enzyme involved in the heme synthesis. Our analysis revealed that SCPs are involved in the de novo assembly/repair cycle of Photosystem II, stabilizing the chlorophyll pigments at their protein scaffold. The in vitro characterization of the recombinant FC showed that ScpA is involved in the product-release of the catalytic domain of the enzyme, thereby regulating substrate availability for chlorophyll- or heme- biosynthesis. Finally, using a transcriptomic and metabolomic approaches, I was able to show that deletion of all SCP genes has profound impact on the cell organization and metabolism. In SCP-depleted cells, production of reactive oxygen species (ROS) is increased, while the amount of Photosystem II per cell volume is decreased, causing a macronutrient-deficient phenotype. Therefore, SCPs are important for stress protection and help to maintain a metabolic equilibrium within the cell.

Page generated in 0.0231 seconds