• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 21
  • 21
  • 17
  • 15
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

PI-equivalência em álgebras graduadas simples

Naves, Fernando Augusto 29 February 2016 (has links)
Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-10-11T13:29:51Z No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:50:57Z (GMT) No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-17T18:51:05Z (GMT) No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) / Made available in DSpace on 2016-10-17T19:06:01Z (GMT). No. of bitstreams: 1 DissFAN.pdf: 767462 bytes, checksum: 05054cc8952eed4e120838068aee80d8 (MD5) Previous issue date: 2016-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / This work aims to give a description, under certain hypothesis, of the graded simple algebras and prove that they are determined by their graded identities. For this, we study the papers [3] and [19]. More precisely we will show the following: Let G be a group, F an algebraically closed eld, and R = L g2G Rg a finite dimensional G-graded F-algebra such that the order of each finite subgroup of G is invertible in F. Then R is a G-graded simple algebra if and only if R is isomorphic, as graded algebra, to the tensor product C = Mn(F) F [H], where H is a nite subgroup of G, is a 2-cocycle in H, Mn(F) has an elementary G-grading, F [H] has a canonical grading and C has an induced G-grading by the tensor product. Based on this result, admitting the same assumptions and adding that G is an abelian group, we prove that two graded simple algebras satisfy the same graded identities if and only if they are isomorphic as graded algebras. / Este trabalho tem por objetivo dar uma descrição, sob certas hipóteses, das álgebras graduadas simples e demonstrar que elas são determinadas por suas identidades graduadas. Para isso, estudamos os artigos [3] e [19]. Precisamente mostraremos o seguinte: sejam G um grupo, F um corpo algebricamente fechado e R =Lg2GRg uma F-álgebra G-graduada de dimensão finita, tal que a ordem de todo subgrupo finito de G e invertível em F. Então R é uma álgebra G-graduada simples se, e somente se, R é isomorfa, como álgebra graduada, ao produto tensorial C = Mn(F) F[H], onde H e subgrupo finito de G, e um 2-cociclo em H, Mn(F) tem uma graduação elementar, F[H] tem uma graduação canônica e considera-se em C a G-graduação induzida pelo produto tensorial. Partindo deste resultado, admitindo as mesmas hipóteses e adicionando que G seja um grupo abeliano, provaremos que duas álgebras graduadas simples satisfazem as mesmas identidades graduadas se, e somente se, são isomorfas como álgebras graduadas.

Page generated in 0.0365 seconds