• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physics-informed Neural Networks for Biopharma Applications

Cedergren, Linnéa January 2021 (has links)
Physics-Informed Neural Networks (PINNs) are hybrid models that incorporate differential equations into the training of neural networks, with the aim of bringing the best of both worlds. This project used a mathematical model describing a Continuous Stirred-Tank Reactor (CSTR), to test two possible applications of PINNs. The first type of PINN was trained to predict an unknown reaction rate law, based only on the differential equation and a time series of the reactor state. The resulting model was used inside a multi-step solver to simulate the system state over time. The results showed that the PINN could accurately model the behaviour of the missing physics also for new initial conditions. However, the model suffered from extrapolation error when tested on a larger reactor, with a much lower reaction rate. Comparisons between using a numerical derivative or automatic differentiation in the loss equation, indicated that the latter had a higher robustness to noise. Thus, it is likely the best choice for real applications. A second type of PINN was trained to forecast the system state one-step-ahead based on previous states and other known model parameters. An ordinary feed-forward neural network with an equal architecture was used as baseline. The second type of PINN did not outperform the baseline network. Further studies are needed to conclude if or when physics-informed loss should be used in autoregressive applications.

Page generated in 0.0228 seconds