521 |
1D engine simulation of a turbocharged SI engine with CFD computation on componentsRenberg, Ulrica January 2008 (has links)
Techniques that can increase the SI- engine efficiency while keeping the emissions very low is to reduce the engine displacement volume combined with a charging system. Advanced systems are needed for an effective boosting of the engine and today 1D engine simulation tools are often used for their optimization. This thesis concerns 1D engine simulation of a turbocharged SI engine and the introduction of CFD computations on components as a way to assess inaccuracies in the 1D model. 1D engine simulations have been performed on a turbocharged SI engine and the results have been validated by on-engine measurements in test cell. The operating points considered have been in the engine’s low speed and load region, with the turbocharger’s waste-gate closed. The instantaneous on-engine turbine efficiency was calculated for two different turbochargers based on high frequency measurements in test cell. Unfortunately the instantaneous mass flow rates and temperatures directly upstream and downstream of the turbine could not be measured and simulated values from the calibrated engine model were used. The on-engine turbine efficiency was compared with the efficiency computed by the 1D code using steady flow data to describe the turbine performance. The results show that the on-engine turbine efficiency shows a hysteretic effect over the exhaust pulse so that the discrepancy between measured and quasi-steady values increases for decreasing mass flow rate after a pulse peak. Flow modeling in pipe geometries that can be representative to those of an exhaust manifold, single bent pipes and double bent pipes and also the outer runners of an exhaust manifold, have been computed in both 1D and 3D under steady and pulsating flow conditions. The results have been compared in terms of pressure losses. The results show that calculated pressure gradient for a straight pipe under steady flow is similar using either 1D or 3D computations. The calculated pressure drop over a bend is clearly higher1D engine simulations of turbocharged engines are difficult to using 1D computations compared to 3D computations, both for steady and pulsating flow. Also, the slow decay of the secondary flow structure that develops over a bend, gives a higher pressure gradient in the 3D calculations compared to the 1D calculation in the straight pipe parts downstream of a bend. / QC 20101119
|
522 |
Cellular and molecular biomarkers detected in the oral mucosa and saliva in water-pipe tobacco smoking compared to cigarette smoking: A systematic reviewDalia, Elamin January 2021 (has links)
Magister Chirurgiae Dentium (MChD) / Water-pipe tobacco smoking (WTS) is a form of tobacco use with different names. There is a misconception that passing tobacco smoke through water reduces its harmful effects to increase its popularity. One million individuals smoke water-pipe daily, resulting in approximately five million deaths per annum globally. The toxic effects of WTS are related to the several components of the tobacco mixture. WTS contains 100 times more tar, four-fold more nicotine, eleven-fold more Carbon Monoxide (CO), and two to five-fold more polycyclic aromatic hydrocarbons than cigarettes.
|
523 |
CFD Simulation of Particles in Pipe Flow and Mixing TankJanic, Aljaz January 2020 (has links)
This project aimed to investigate the capability of the STAR CCM+ software when predicting the flow with particles using Lagrangian Particle Tracking and Discrete Element Method. The first part pertained to rectangular channel flow, with ratio between height of the channel and particle diameter (2h/Dp ) of 15. It was found out that simulations of particles in a channel come with many diculties. Such as, obtaining accurate pressure drop results using DEM when comparing to DNS simulations including particles within a reasonable computational time. The second part consisted of a simulation of the off-centred mixing tank. As the use of DEM caused numerical issues, another modeling approach was used. Therefore, the Lagrangian Particle Tracking was used. The outcome of the project is the sensitivity study of the forces which can be applied to the particles. The finding was that the Shear Lift force and the Virtual Mass force have a negligible contribution in regards to the particles distribution. In addition to this, it was also discovered that the turbulence model has a large effect on the particles in the near-wall region. Choosing an isotropic turbulence model resulted in clustering of the particles near the wall, therefore an anisotorpic turbulence model needed to be used.
|
524 |
Analýza rizik násoskových řadů / Risk analysis of siphon pipesOutratová, Markéta January 2012 (has links)
The master’s thesis discusses siphon pipes that are used to collect groundwater. The goal of work is to define the most frequent undesired events that may appear on siphon pipes, and verifying the individual springs. The work is addressed in accordance with the metodology of risk analysis WaterRisk. The content of the work is a summary of the hydraulic of siphon pipes and their use in practice, hazard identification, defining the most frequent undesired events and consequences on siphon pipes, and their verification in the spring in a particular case study.
|
525 |
HYDRAULIC ANALYSIS OF TRANSIENT FLOWS WITH INTERFACE BETWEEN PRESSURIZED AND FREE SURFACE FLOWS AND ITS APPLICATIONS / 圧力流れと自由表面流れの境界面を有する過渡現象の水理解析法とその応用Hamid, Bashiri Atrabi 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19288号 / 工博第4085号 / 新制||工||1630(附属図書館) / 32290 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 細田 尚, 教授 戸田 圭一, 教授 後藤 仁志 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
526 |
Structural Benefits of Concrete Paving of Deteriorated Metal Culvert InvertsFekrat, Abdul Qaium January 2018 (has links)
No description available.
|
527 |
MULTI-LAYERED TUBING AND PIPING: TECHNOLOGY DEVELOPMENT AND TRANSFER LEADING TO NEW DIMENSIONS IN ANNULAR LAYERED STRUCTURESSchneider, Tyler 28 January 2020 (has links)
No description available.
|
528 |
The Susceptibility of Electric Resistance Welded Line Pipe to Selective Seam Weld CorrosionRitchie, Porter 07 October 2020 (has links)
No description available.
|
529 |
A First Principles Study of Pipe Diffusion in NickelWirth, Luke J. January 2020 (has links)
No description available.
|
530 |
Kallvattenledningar under värmegolv - med Comsolsimuleringar / Estimating Cold-water pipe temperatures in floors with underfloor heating using Comsol Multiphysics simulationsLindblom, Jennie, Persson, Linnea January 2020 (has links)
Under årens gång har regelverk och byggnormer ändrats, och det har även gjort att utformningen av dessa har påverkats. Utförandekrav har övergått till funktionskrav, vilket har gjort att säkerhetsrisker kan uppstå eftersom olika metoder används vid installation. Ett sådant exempel är risken för legionellatillväxt. För att minimera denna risk har Boverket tagit fram byggregler, däribland att tappkallvattentemperaturen inte får överstiga 24°C under en period på åtta timmar då vattnet är stillastående. Baserat på detta har Säker Vatten AB utvecklat branschregler för VVS-företag och har därmed upptäckt problem då tappkallvattenledningen ligger i ett golv med installerad golvvärme. På denna grund bygger detta arbete som genom simuleringar i Comsol Multiphysics® v. 5.4 undersöker fyra modeller av kallvattenrör i golv med golvvärme. Resultatet för de fyra modellerna visar att kallvattnets temperatur överstiger 24°C vid installation av golvvärme vid användning av smala vattenrör och tunn isolering. Vid undersökning av användning av grövre rör med tjockare isolering blev resultatet att en kombination av 20mm i diameter vattenrör och 80mm isolering respektive 25mm i diameter vattenrör och drygt 50mm isolering klarade Boverkets temperaturkrav. Det framtagna resultatet visar på att det krävs en stor isoleringstjocklek vilket kan göra kallvattenledningen för stor i jämförelse med golvets tjocklek och därmed riskeras golvets stabilitet. Därför kan det vara bättre att använda en annan placering av kallvattenledningen när golvvärme installerats. / Building regulations and standards have changed over the years which has also had an impact on their design. Performance standards have changed to functional standards, which has led to potential safety hazards, as different methods are used by different stakeholders during installation. An example of a potential safety hazard is legionella growth. To minimize this particular hazard, the Swedish Board of Housing, Building and Planning has developed building regulations, including the regulation that the temperature of cold tap water cannot exceed 24°C for a period of eight hours while the water is stagnant. Based on this regulation, Säker Vatten AB has developed a set of trade standards for plumbing companies and has discovered that problems arise when cold-water pipes are situated in floors with underfloor heating. Based on the above, this project studies four models of cold-water pipes situated in floors with underfloor heating through simulations in Comsol Multiphysics® v. 5.4. The results from the four models show that the cold-water temperature exceeds 24°C when underfloor heating is installed and narrow water pipes and thin insulation are used. When studying the use of pipes with larger diameters and thicker insulation, the results show that the combinations of a 20mm diameter pipe with 80mm insulation, and a 25mm diameter pipe with just over 50mm insulation, satisfied the temperature regulations required by the Swedish Board of Housing, Building and Planning. The results obtained show that thick insulation is necessary, which can cause the cold-water pipe to be too large in comparison with the floor’s thickness, risking the floor’s stability. As a result, alternative placement of the cold-water pipe is to is to be preferred when underfloor heating is installed.
|
Page generated in 0.088 seconds