• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Proteinexpressionsanalysen in den klinisch-pathologischen Subtypen Gastrointestinaler Stromatumoren (GIST) / The analysis of the quantitative protein expression in the clinical-pathological subtypes of Gastrointestinal stromal tumors (GIST)

Helfrich, Joel 02 March 2011 (has links)
No description available.
2

Mécanismes de résistance à l’insuline par les acides gras libres dans les podocytes rénaux menant à la néphropathie diabétique / Effect of free fatty acids on insulin resistance in renal podocytes leading to diabetic nephropathy

Dumas, Marie-Eve January 2017 (has links)
La néphropathie diabétique (ND), principale cause d’insuffisance rénale chronique, est caractérisée par une dysfonction des podocytes rénaux. Cette dysfonction podocytaire peut être causée par une résistance à l’insuline induite suite à l’exposition des podocytes aux acides gras libres (AGL). L’un des mécanismes par lequel les AGL réduisent les actions de l’insuline serait l’activation de la voie de Mammalian target of rapamycin (mTOR). Les objectifs sont de caractériser les mécanismes de résistance à l’insuline par les AGL dans les podocytes et d’étudier l’implication de la voie du complexe mTORC1 menant à la ND dans un modèle de diabète de type 2. In vivo, la fonction et la pathologie rénale des souris diabétiques de type 2 (db/db) ont été évaluées. Des podocytes murins ont été cultivés pendant 96 h en conditions normales (5,6 mM, NG) ou élevées (25 mM, HG) de glucose avec ou sans palmitate (25 μM) pour les dernières 24 h. In vitro, les podocytes exposés en HG ont montré une diminution de l’activation d’Akt induite par l’insuline. Le palmitate seul a diminué de 50% l’activation d’Akt alors que la combinaison HG + palmitate a accentué cette diminution en la réduisant de 72%. Cette inhibition se ferait via la phosphorylation en sérine d’IRS1. En effet, en présence de palmitate, la phosphorylation d’IRS1 (ser307) est augmentée d’environ 2 fois. De plus, la phosphorylation d’IRS1 par le palmitate est corrélée à une augmentation de la phosphorylation de mTOR (ser2448) et de son substrat S6 (ser240/244). L’inhibition de la voie de signalisation de l’insuline par la voie mTOR serait due à l’activation de la PKC-α suite à une stimulation au palmitate. Pour ce qui est de mTORC2, la phosphorylation inhibitrice de Rictor (thr1135) augmente de 47% en présence de palmitate. In vivo, dans les souris db/db, l’augmentation des marqueurs de la ND (albuminurie, expansion du mésangium, hypertrophie du glomérule et expression de TGF-beta) est associée à une élévation de la p-mTOR, p-Rictor et de p-S6 dans les glomérules rénaux. En conclusion, le phénomène de résistance à l’insuline par les AGL dans les podocytes serait causé par l’activation de PKC-α/mTORC1 menant à la phosphorylation d’IRS1 en sérine 307, un mécanisme complémentaire aux actions de l’hyperglycémie, et contribuant de façon indépendante à la progression de la ND. De plus, l’inhibition du complexe mTORC2 contribue à la diminution de la signalisation de la voie de l’insuline. / Abstract : Diabetic nephropathy (DN) is the leading cause of chronic renal failure in diabetic patients and is characterized by the dysfunction of podocytes. Our laboratory has shown that hyperglycemia caused podocyte insulin unresponsiveness and cell death via the upregulation of PKC- and SHP-1, a tyrosine phosphatase. In contrast, free fatty acids (FFA)-induced insulin resistance in podocytes is not associated with SHP-1 expression. Thus, other signaling pathways could be implicated including the activation of the Mammalian target of rapamycin (mTOR) complexes pathway. The aim of this study was to investigate the insulin resistance mechanisms caused by FFA in podocytes leading to DN in type 2 diabetes. In vitro, cultured podocytes were exposed to normal (5.6 mmol/L; NG) or high glucose (25 mmol/L; HG) levels for 96 h and to palmitate (25 µmol/L) the last 24h with or without insulin stimulation (10 nmol/L). As previously showed, podocytes exposed to HG decreased Akt activation upon insulin stimulation. Palmitate treatment alone reduced insulin-induced Akt phosphorylation by 50% while a combination of palmitate and HG blunted Akt activation by 72%. The inhibition of Akt by palmitate was associated with the increase of PKC- activation leading to mTOR phosphorylation and its substrate S6. Moreover, the mTORC1 complex activation enhanced the serine 307 phosphorylation of IRS1 known to de-activate IRS1. Furthermore, palmitate also mediated the mTORC2 complex inhibition via the Thr1135 phosphorylation of Rictor. In vivo, the implication of mTORC1 complex in DN development was evaluated using 25 weeks old type 2 diabetes mice (db/db). Mice developed increased albuminuria, mesangial cell expansion and glomerular hypertrophy compared to non-diabetic mice, which correlated with the phosphorylation of mTOR, Rictor and S6. In conclusion, elevated FFA levels caused activation of PKC-/mTORC1 pathway and inhibition of mTORC2 leading to insulin resistance in podocytes and DN progression.
3

L’inhibition de la p38 α/β MAPK engendre une inhibition de la réponse inflammatoire et aboutit à la réintégration de deux populations distinctes de cardiomyocytes ventriculaires de rats nouveau-nés dans le cycle cellulaire

Kebbe, Mariana 03 1900 (has links)
Les expériences suivantes testent l’hypothèse que la sérine/thréonine kinase p38α/β MAPK inhibe la rentrée dans le cycle cellulaire des cardiomyocytes ventriculaires de rats nouveau-nés (CVRNs), et induit l’expression d’un panel de cytokines/chimiokines inflammatoires. Le traitement des CVRNs par le phorbol 12,13-butyrate (PDBu), activateur de la protéine kinase C (PKC), aboutit au recrutement de l’isoforme conventionnelle (PKC-α) et des isoformes nouvelles (PKC-δ et PKC-ε) de PKC en l’absence de la rentrée dans le cycle cellulaire. Cette absence d’entrée dans le cycle cellulaire à la suite du traitement par PDBu est associée à une augmentation d’expression des ARNm des gènes qui bloquent la rentrée dans le cycle cellulaire. Les gènes comprennent Runx1(Runt-related transcription factor 1) et CDKN2a (cyclin-dependent kinase inhibitor 2A) également connu sous le nom de p16, inhibiteur du cycle cellulaire. En présence de l’inhibiteur de p38α/β MAPK, SB203580, le traitement PDBu induit une entrée dans le cycle cellulaire de deux populations distinctes de cardiomyocytes caractérisées par l’absence ou l’expression de novo de la protéine filamenteuse Nestine. En parallèle, le co-traitement PDBu/SB203580 atténue l’augmentation du niveau d’expression de l’ARNm de Runx1 et CDKN2a. L’inhibition pharmacologique du recrutement de PKC-α par GF109203X, inhibe sélectivement la rentrée dans le cycle cellulaire des CVRNs qui présentent une expression de novo de Nestine. En parallèle, le traitement par PDBu augmente le niveau d’ARNm d’un panel de cytokines inflammatoires et la co-administration de SB203580 inhibe cette réponse. Ces données révèlent que le cœur des rats nouveau-nés contient deux sous-populations distinctes de cardiomyocytes ventriculaires qui rentrent dans le cycle cellulaire à la suite d’un co-traitement PDBu / SB203580, et que la réponse proliférative est associée à une diminution des cytokines inflammatoires. Collectivement, ces résultats mettent en relief une nouvelle prémisse selon laquelle le recrutement de p38α/β MAPK médié par PKC-α joue un rôle central dans l’inhibition de l’entrée dans le cycle cellulaire et induit une réponse inflammatoire robuste par les CRVNs. / The following experiments test the hypothesis that the serine/threonine kinase p38α/β MAPK inhibits the cell cycle re-entry of neonatal rat ventricular cardiomyocytes (NNVMs) and induces the expression of a panel of inflammatory cytokines/chemokines. Treatment of NNVMs with phorbol 12,13-butyrate (PDBu), an activator of protein kinase C (PKC), results in the recruitment of the conventional isoform (PKC-α) and novel isoforms (PKC-δ and PKC-ε) of PKC in the absence of cell cycle re-entry. This lack of cell cycle re-entry following PDBu treatment is associated with an increase in the expression of mRNA of genes that inhibit cell cycle re-entry. These genes include Runx1 (Runt-related transcription factor 1) and CDKN2a (cyclin-dependent kinase inhibitor 2A), also known as p16, a cell cycle inhibitor. In the presence of the p38α/β MAPK inhibitor, SB203580, PDBu treatment induces cell cycle re-entry in two distinct populations of cardiomyocytes characterized by the absence or de novo expression of the filamentous protein Nestin. In parallel, co-treatment with PDBu/SB203580 attenuates the increase in Runx1 and CDKN2a mRNA levels. Pharmacological inhibition of PKC-α recruitment by GF109203X selectively inhibits cell cycle re-entry of NNVMs exhibiting de novo Nestin expression. Additionally, PDBu treatment increases the mRNA levels of a panel of inflammatory cytokines, and co-administration of SB203580 inhibits this response. These data reveal that the heart of neonatal rats contain two distinct subpopulations of ventricular cardiomyocytes that re-enter the cell cycle following PDBu/SB203580 co-treatment, and that the proliferative response is associated with a decrease in inflammatory cytokines. Collectively, these results highlight a novel premise whereby p38α/β MAPK recruitment mediated by PKC-α plays a central role in inhibiting cell cycle re-entry and induces a robust inflammatory response by NNVMs.

Page generated in 0.0449 seconds