• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimized design recommendation for first pharmacokinetic in vivo experiments for new tuberculosis drugs using pharmacometrics modelling and simulation

Leding, Albin January 2021 (has links)
Tuberculosis, the leading cause of death by a single infection disease caused by bacteria, requires long treatments and the bacteria are prone to develop drug resistance. Therefore, new efficient treatment regiments needs developing, which requires new tools for drug development. A major reason for discontinuance of a drug under development is undesired pharmacokinetic properties. Therefore, it is important to have early information of this, preferably the first time the drug is tested in animals. The first in vivo pharmacokinetic experiment is often done in mice and the only information present at this stage are often in vitro values and physicochemical properties. Physiological-based pharmacokinetic modelling can be used to extrapolate from in vitro to in vivo values. From this, the first in vivo pharmacokinetic experiment can be designed, often with the goal of reducing the amount of mice. This goal is one of the three R.s and it is called Reduction. To explore the Reduction of an experiment population pharmacokinetic modelling can be utilized via exploration of the imprecision, bias and probability of an informative experiment to evaluate if a design meets the goal of Reduction. In this report a recommendation of the first in vivo pharmacokinetic experiment is presented. This is based on in vitro values and physicochemical properties that are common in anti-tuberculosis drugs. If the probability of an informative experiment is critical, a terminal sampling of 40 mice is recommended. If imprecision and bias are necessary, zipper sampling of 10 mice is recommended.

Page generated in 0.0207 seconds